69 research outputs found

    a comparison of semg temporal and spatial information in the analysis of continuous movements

    Get PDF
    Abstract Much effort has recently been devoted to the analysis of continuous movements with the aim of promoting EMG signal acceptance in several fields of application. Moreover, several studies have been performed to optimize the temporal and spatial parameters in order to obtain a robust interpretation of EMG signals. Resulting from these perspectives, the investigation of the contribution of EMG temporal and spatial information has become a relevant aspect for signal interpretation. This paper aims to evaluate the effects of the two types of information on continuous motions analysis. In order to achieve this goal, the spatial and temporal information of EMG signals were separated and applied as input for an offline Template Making and Matching algorithm. Movement recognition was performed testing three different methods. In the first case (the Temporal approach) the RMS time series generated during movements was the only information employed. In the second case (the Spatial approach) the mean RMS amplitude measured on each channel was considered. Finally, in the third case (the Spatio-Temporal approach) a combination of the information from both the previous approaches was applied. The experimental protocol included 14 movements, which were different from each other in the muscular activation and the execution timing. Results show that the recognition of continuous movements cannot disregard the temporal information. Moreover, the temporal patterns seem to be relevant also for distinguishing movements which differ only in the muscular areas they activate

    Actuators based on intrinsic conductive polymers/carbon nanoparticles nanocompositesElectroactive Polymer Actuators and Devices (EAPAD) 2013

    Get PDF
    New polyaniline (PANi) synthesis was performed starting from non-toxic N-phenil-p-phenylenediamine (aniline dimer) using reverse addition of monomer to oxidizing agent, the synthesis allows to produce highly soluble PANi. Several types of doped PANi were prepared to be used on electromechanical active actuators. Different techniques were used to include carbon nanoparticles such as carbon nanotubes and graphene. Bimorph solid state ionic actuators were prepared with these novel nanocomposites using a variety of supporting polymer

    Clinical Features to Predict the Use of a sEMG Wearable Device (REMO®) for Hand Motor Training of Stroke Patients: A Cross-Sectional Cohort Study

    Get PDF
    After stroke, upper limb motor impairment is one of the most common consequences that compromises the level of the autonomy of patients. In a neurorehabilitation setting, the implementation of wearable sensors provides new possibilities for enhancing hand motor recovery. In our study, we tested an innovative wearable (REMO®) that detected the residual surface-electromyography of forearm muscles to control a rehabilitative PC interface. The aim of this study was to define the clinical features of stroke survivors able to perform ten, five, or no hand movements for rehabilitation training. 117 stroke patients were tested: 65% of patients were able to control ten movements, 19% of patients could control nine to one movement, and 16% could control no movements. Results indicated that mild upper limb motor impairment (Fugl-Meyer Upper Extremity 18 points) predicted the control of ten movements and no flexor carpi muscle spasticity predicted the control of five movements. Finally, severe impairment of upper limb motor function (Fugl-Meyer Upper Extremity > 10 points) combined with no pain and no restrictions of upper limb joints predicted the control of at least one movement. In conclusion, the residual motor function, pain and joints restriction, and spasticity at the upper limb are the most important clinical features to use for a wearable REMO® for hand rehabilitation training
    • …
    corecore