22 research outputs found
Breathomics can discriminate between anti IgE-treated and non-treated severe asthma adults
Rationale: Omalizumab, an anti-IgE monoclonal antibody, is indicated in adults with severe persistent allergic asthma. Exhaled molecular markers can provide phenotypic information in asthma. Objectives: Determine whether adults with severe asthma on omalizumab (anti-IgE+) have a different breathprint compared with those who were not on anti-IgE therapy (anti-IgE-) as assessed by eNoses and gas chromatography/mass spectrometry (GC/MS) (breathomics). Methods: This was a cross-sectional analysis of the U- BIOPRED adult cohort. Severe asthma was defined by IMI-criteria [Bel, Thorax 2011]. Anti-IgE+ patients were on a regular treatment with s.c. omalizumab (150-375 mg) every 2-4 weeks. Exhaled volatile compounds trapped on adsorption tubes were analysed by a centralized eNose platform (Owlstone Lonestar, two Cyranose 320, Comon Invent, Tor Vergata TEN), including a total of 190 sensors, and GC/MS. Recursive feature elimination (http://topepo.github.io/caret/rfe.html) was used for feature selection and random forests, more robust to overfitting, for classification. Results: 9 anti- IgE+ (females/males 2/7, age 52.6±16.3 years, mean±SD, 1/2/6 current/ex/nonsmokers, pre-bronchodilator FEV1 70.6±21.1% predicted value) and 30 anti-IgE- patients (18/12 females/males, age 53.2±14.2 years, 0/16/14 current/ex/nonsmokers, pre-bronchodilator FEV1 59.6±30.7% predicted value) were studied.
Conclusions: Preliminary results suggest that breathomics can distinguish between anti-IgE+ and anti-IgE- severe asthma patients
Transcriptomic gene signatures associated with persistent airflow limitation in patients with severe asthma
A proportion of severe asthma patients suffers from persistent airflow limitation (PAL), often associated with more symptoms and exacerbations. Little is known about the underlying mechanisms. Here, our aim was to discover unexplored potential mechanisms using Gene Set Variation Analysis (GSVA), a sensitive technique that can detect underlying pathways in heterogeneous samples.
Severe asthma patients from the U-BIOPRED cohort with PAL (post-bronchodilator forced expiratory volume in 1 s/forced vital capacity ratio below the lower limit of normal) were compared with those without PAL. Gene expression was assessed on the total RNA of sputum cells, nasal brushings, and endobronchial brushings and biopsies. GSVA was applied to identify differentially enriched predefined gene signatures based on all available gene expression publications and data on airways disease.
Differentially enriched gene signatures were identified in nasal brushings (n=1), sputum (n=9), bronchial brushings (n=1) and bronchial biopsies (n=4) that were associated with response to inhaled steroids, eosinophils, interleukin-13, interferon-α, specific CD4+ T-cells and airway remodelling.
PAL in severe asthma has distinguishable underlying gene networks that are associated with treatment, inflammatory pathways and airway remodelling. These findings point towards targets for the therapy of PAL in severe asthma
Breathomics and treatable traits for chronic airway diseases
PURPOSE OF REVIEW: The long-term management goals of the inflammatory airway diseases asthma and chronic obstructive pulmonary disease (COPD) are similar and focus on symptom control and reduction of exacerbation frequency and severity. Treatable traits have recently been postulated as a management concept which complements the traditional diagnostic labels 'asthma' and 'COPD', thereby focusing on therapy targeted to a patients' individual disease-associated characteristics. Exhaled volatile organic compounds (VOCs) may be utilized as noninvasive biomarker for disease activity or manifestation in asthma and COPD. In this review, we provide an overview of the current achievements concerning exhaled breath analysis in the field of uncontrolled chronic airways diseases. RECENT FINDINGS: Monitoring of (airway) inflammation and identification of (molecular) phenotypic characteristics in asthma and COPD through exhaled VOC analysis by either mass spectrometry (MS) based or sensor-driven electronic nose technology (eNose) seems to be feasible, however pending confirmation could hamper the valorization of breathomics into clinical tests. SUMMARY: Exhaled VOC analysis and the management of asthma and COPD through the concept of pulmonary treatable traits are an interesting match. To develop exhaled breath analysis into an added value for pulmonary treatable traits, multicentre studies are required following international standards for study populations, sampling methods and analytical strategies enabling external validation
Supplementing rumen‐protected methionine to lactating multiparous dairy cows did not improve reproductive performance
There is evidence that supplementing methionine has positive effects on uterine environment, oocyte quality and embryo development in cattle. Thus, the objective of this study was to evaluate reproductive traits of cows supplemented with rumen-protected methionine (RPM) during early to mid-lactation in comparison with an untreated control group (CON). An additional focus was on the effect of puerperal diseases on reproductive performance parameters in RPM-supplemented group MET and in CON. A total of 1,709 multiparous Holstein-Friesian cows were enrolled in this field trial conducted on a commercial dairy farm in Slovakia. Cows were allocated at approximately 12 days post-partum (dpp) to either CON or MET, the latter supplemented with 25.0 g-27.2 g RPM per cow per day incorporated into the total mixed ration (TMR) until leaving the study pen at approximately 140 dpp. The amount of RPM was calculated based on individual feed ingredients analysis and adjusted during the study period when TMR changed. Cows were monitored during the post-partum period by vaginal examination (day 5 pp), measuring of beta-hydroxybutyrate in blood (3, 5, and 8 dpp) and by vaginal examination, uterine cytology and measuring of back fat thickness by ultrasound (all at 31 ± 3 dpp). Compared with CON, cows supplemented with RPM did not show better reproduction performance parameters (first service submission rate, days to first service, conception risk, days open 140). Results from binary logistic regression model for the risk of conception showed that metritis had a significant effect, but the supplementation of methionine had not. Results of Cox regression analysis for the odds of conception within 140 dpp revealed only metritis and clinical endometritis as significant factors. In conclusion, supplementation of RPM had no beneficial effect on reproductive performance in this study farm compared with an untreated control group
Toward composite molecular signatures in the phenotyping of asthma
The complex biology of respiratory diseases such as asthma is feeding the discovery of various disease phenotypes. Although the clinical management of asthma phenotypes by using a single biomarker (e.g., sputum eosinophils) is successful, emerging evidence shows the requirement of multiscale, high-dimensional biological and clinical measurements to capture the complexity of various asthma phenotypes. High-throughput "omics" technologies, including transcriptomics, proteomics, lipidomics, and metabolomics, are increasingly standardized for biomarker discovery in asthma. The leading principle is obeying available guidelines on omics analysis, thereby strictly limiting false discovery. In this review we address the concept of transcriptomics using microarrays or next-generation RNA sequencing and their applications in asthma, highlighting the strengths and limitations of both techniques, and review metabolomics in exhaled air (breathomics) as a noninvasive alternative for sampling the airways directly. These developments will inevitably lead to the integration of molecular signatures in the phenotyping of asthma and other disease
dsRNA-induced changes in gene expression profiles of primary nasal and bronchial epithelial cells from patients with asthma, rhinitis and controls
Rhinovirus infections are the most common cause of asthma exacerbations. The complex responses by airway epithelium to rhinovirus can be captured by gene expression profiling. We hypothesized that: a) upper and lower airway epithelium exhibit differential responses to double-stranded RNA (dsRNA), and b) that this is modulated by the presence of asthma and allergic rhinitis. Identification of dsRNA-induced gene expression profiles of primary nasal and bronchial epithelial cells from the same individuals and examining the impact of allergic rhinitis with and without concomitant allergic asthma on expression profiles. This study had a cross-sectional design including 18 subjects: 6 patients with allergic asthma with concomitant rhinitis, 6 patients with allergic rhinitis, and 6 healthy controls. Comparing 6 subjects per group, the estimated false discovery rate was approximately 5%. RNA was extracted from isolated and cultured primary epithelial cells from nasal biopsies and bronchial brushings stimulated with dsRNA (poly(I:C)), and analyzed by microarray (Affymetrix U133+ PM Genechip Array). Data were analysed using R and the Bioconductor Limma package. Overrepresentation of gene ontology groups were captured by GeneSpring GX12. In total, 17 subjects completed the study successfully (6 allergic asthma with rhinitis, 5 allergic rhinitis, 6 healthy controls). dsRNA-stimulated upper and lower airway epithelium from asthma patients demonstrated significantly fewer induced genes, exhibiting reduced down-regulation of mitochondrial genes. The majority of genes related to viral responses appeared to be similarly induced in upper and lower airways in all groups. However, the induction of several interferon-related genes (IRF3, IFNAR1, IFNB1, IFNGR1, IL28B) was impaired in patients with asthma. dsRNA differentially changes transcriptional profiles of primary nasal and bronchial epithelial cells from patients with allergic rhinitis with or without asthma and controls. Our data suggest that respiratory viruses affect mitochondrial genes, and we identified disease-specific genes that provide potential targets for drug developmen
Article Electronic Nose Breathprints Are Independent of Acute Changes in Airway Caliber in Asthma
sensor
The Impact of Allergic Rhinitis and Asthma on Human Nasal and Bronchial Epithelial Gene Expression
<div><p>Background</p><p>The link between upper and lower airways in patients with both asthma and allergic rhinitis is still poorly understood. As the biological complexity of these disorders can be captured by gene expression profiling we hypothesized that the clinical expression of rhinitis and/or asthma is related to differential gene expression between upper and lower airways epithelium.</p><p>Objective</p><p>Defining gene expression profiles of primary nasal and bronchial epithelial cells from the same individuals and examining the impact of allergic rhinitis with and without concomitant allergic asthma on expression profiles.</p><p>Methods</p><p>This cross-sectional study included 18 subjects (6 allergic asthma and allergic rhinitis; 6 allergic rhinitis; 6 healthy controls). The estimated false discovery rate comparing 6 subjects per group was approximately 5%. RNA was extracted from isolated and cultured epithelial cells from bronchial brushings and nasal biopsies, and analyzed by microarray (Affymetrix U133+ PM Genechip Array). Data were analysed using R and Bioconductor Limma package. For gene ontology GeneSpring GX12 was used.</p><p>Results</p><p>The study was successfully completed by 17 subjects (6 allergic asthma and allergic rhinitis; 5 allergic rhinitis; 6 healthy controls). Using correction for multiple testing, 1988 genes were differentially expressed between healthy lower and upper airway epithelium, whereas in allergic rhinitis with or without asthma this was only 40 and 301 genes, respectively. Genes influenced by allergic rhinitis with or without asthma were linked to lung development, remodeling, regulation of peptidases and normal epithelial barrier functions.</p><p>Conclusions</p><p>Differences in epithelial gene expression between the upper and lower airway epithelium, as observed in healthy subjects, largely disappear in patients with allergic rhinitis with or without asthma, whilst new differences emerge. The present data identify several pathways and genes that might be potential targets for future drug development.</p></div
K-means clustering.
<p>Every three figures per row represent one cluster. The cluster is mentioned above the first figure. Every first figure are results for healthy subjects; every second figure for patients with rhinitis only; every third figure for patients with both asthma and rhinitis; <b>B</b> = expression level in bronchial epithelium, <b>N</b> = expression level in nasal epithelium.</p
Baseline characteristics.
*<p>Median (range).</p>†<p>Mean (Standard Deviation).</p>‡<p>Geometric Mean (Geometric Standard Deviation).</p>**<p>No 20% drop in FEV1 at highest concentration of Methacholine 16 mg/mL.</p