146 research outputs found

    Virtavesikalojen talvi – elämää muuttuvissa jääoloissa

    Get PDF

    Specific niche characteristics facilitate the invasion of an alien fish invader in boreal streams

    Get PDF
    We studied the ecological niche relations of native stream fish and an alien invader, brook trout (Salvelinus fontinalis), to examine if brook trout had located an underused environmental niche in our boreal study system. In both study years (1994 versus 2004), we found brook trout to have the most marginal niche position of all the fish species examined. The most important environmental variable affecting the distribution of brook trout was pH, with acid headwater sites being dominated by this species. Brown trout, in contrast, had relatively nonmarginal niche, occurring in average conditions across the sampled sites. Other fish species had niche positions between the two salmonids. Our results show that fish invasions may be strongly facilitated by the presence of suboptimally occupied environmental niche space in the recipient river system

    Migratory behavior of ascending adult salmon (Salmo salar) in the outlets of hydropeaking power plants

    Get PDF
    Extended abstract (No. 2560777201

    Potential Impact of Climate Change on Salmonid Smolt Ecology

    Get PDF
    The migratory life history of anadromous salmonids requires successful migration between nursery, feeding, and spawning habitats. Smolting is the major transformation anadromous salmonids undergo before migration to feeding areas. It prepares juvenile fish for downstream migration and their entry to seawater. We reviewed the effects of climate change on smolt ecology from the growth of juveniles in fresh water to early post-smolts in the sea to identify the potential effects of climate change on migratory salmonid populations during this period in their life history. The focus was especially on Atlantic salmon. The shift in suitable thermal conditions caused by climate change results in Atlantic salmon expanding their range northward, while at the southern edge of their distribution, populations struggle with high temperatures and occasional droughts. Climatic conditions, particularly warmer temperatures, affect growth during the freshwater river phase. Better growth in northern latitudes leads to earlier smolting. Thermal refuges, the areas of cooler water in the river, are important for salmonids impacted by climate change. Restoring and maintaining connectivity and a suitably diverse mosaic habitat in rivers are important for survival and growth throughout the range. The start of the smolt migration has shifted earlier as a response to rising water temperatures, which has led to concerns about a mismatch with optimal conditions for post-smolts in the sea, decreasing their survival. A wide smolt window allowing all migrating phenotypes from early to late migrants’ safe access to the sea is important in changing environmental conditions. This is also true for regulated rivers, where flow regulation practices cause selection pressures on migrating salmonid phenotypes. The freshwater life history also affects marine survival, and better collaboration across life stages and habitats is necessary among researchers and managers to boost smolt production in rivers. Proactive measures are recommended against population declines, including sustainable land use in the catchment, maintaining a diverse mosaic of habitats for salmonids, restoring flow and connectivity, and conserving key habitats
    corecore