3 research outputs found

    Why Fibrin Biomechanical Properties Matter for Haemostasis and Thrombosis.

    Get PDF
    Polymeric fibrin displays unique structural and biomechanical properties that contribute to its essential role of generating blood clots that stem bleeds. The aim of this review is to discuss how the fibrin clot is formed, how protofibrils make up individual fibrin fibers, what the relationship is between the molecular structure and fibrin biomechanical properties, and how fibrin biomechanical properties relate to the risk of thromboembolic disease. Fibrin polymerization is driven by different types of bonds, including knob-hole interactions displaying catch-slip characteristics, and covalent crosslinking of fibrin polypeptides by activated factor XIII. Key biophysical properties of fibrin polymer are its visco-elasticity, extensibility and resistance to rupture. The internal packing of protofibrils within fibers changes fibrin biomechanical behavior. There are several methods to analyze fibrin biomechanical properties at different scales, including AFM force spectroscopy, magnetic or optical tweezers and rheometry, amongst others. Clinically, fibrin biomechanical characteristics are key for the prevention of thromboembolic disorders such as pulmonary embolism. Future studies are needed to address unanswered questions regarding internal molecular structure of the fibrin polymer, the structural and molecular basis of its remarkable mechanical properties and the relationship of fibrin biomechanical characteristics with thromboembolism in patients with deep vein thrombosis and ischemic stroke

    Sensing adhesion forces between erythrocytes and γ’ fibrinogen, modulating fibrin clot architecture and function

    Get PDF
    Plasma fibrinogen includes an alternatively spliced γ-chain variant (γ’), which mainly exists as a heterodimer (γAγ’) and has been associated with thrombosis. We tested γAγ’ fibrinogen-red blood cells (RBCs) interaction using atomic force microscopy-based force spectroscopy, magnetic tweezers, fibrin clot permeability, scanning electron microscopy and laser scanning confocal microscopy. Data reveal higher work necessary for RBC-RBC detachment in the presence of γAγ’ rather than γAγA fibrinogen. γAγ’ fibrinogen–RBCs interaction is followed by changes in fibrin network structure, which forms an heterogeneous clot structure with areas of denser and highly branched fibrin fibers. The presence of RBCs also increased the stiffness of γAγ’ fibrin clots, which are less permeable and more resistant to lysis than γAγA clots. The modifications on clots promoted by RBCs-γAγ’ fibrinogen interaction could alter the risk of thrombotic disorders
    corecore