4 research outputs found

    Effect of dietary energy source on energy balance, production, metabolic disorders and reproduction in lactating dairy cattle

    No full text
    The pathway for oxidation of energy involves a balanced oxidation of C2 and C3 compounds. During early lactation in dairy cattle this C2/C3 ratio is out of balance, due to a high availability of lipogenic (C2) products and a low availability of glycogenic (C3) products relative of the C2 and C3 products required for milk production. This review compares studies which manipulated dietary energy source and shows that dietary energy source can affect the balance of the C2/C3 ratio, as indicated by plasma NEFA, β\beta-hydroxybutyrate (BHBA) and glucose levels. It is shown that glycogenic nutrients increase glucose and insulin concentrations and decrease NEFA and BHBA plasma levels. Extra lipogenic nutrients elevate NEFA and BHBA and decrease plasma glucose concentrations. Lipogenic nutrients generally increase milk fat percentage and decrease milk protein percentage, suggesting a surplus of C2 compounds. The inverse is the case for feeding extra glycogenic nutrients, implying reduced deamination and oxidation of glycogenic amino acids. Feeding extra glycogenic nutrients improved the energy balance (EB), in contrast to ambiguous results of lipogenic nutrients on EB. Moreover, glycogenic feed may reduce the severity of ketosis and fatty liver, but increased the incidence of (sub)clinical acidosis. Since studies are scarce, it seems difficult to draw conclusions on the effects of dietary energy source on reproduction. However, lipogenic nutrients decrease glucose and increase NEFA and BHBA plasma levels. High plasma NEFA and BHBA and low plasma glucose levels are associated with decreased reproductive performance, which might imply the C2/C3 compound balance to be important for reproductive function

    Effects of dry period length on production, cash flows and greenhouse gas emissions of the dairy herd : A dynamic stochastic simulation model

    No full text
    Shortening or omitting the dry period of dairy cows improves metabolic health in early lactation and reduces management transitions for dairy cows. The success of implementation of these strategies depends on their impact on milk yield and farm profitability. Insight in these impacts is valuable for informed decision-making by farmers. The aim of this study was to investigate how shortening or omitting the dry period of dairy cows affects production and cash flows at the herd level, and greenhouse gas emissions per unit of milk, using a dynamic stochastic simulation model. The effects of dry period length on milk yield and calving interval assumed in this model were derived from actual performance of commercial dairy cows over multiple lactations. The model simulated lactations, and calving and culling events of individual cows for herds of 100 cows. Herds were simulated for 5 years with a dry period of 56 (conventional), 28 or 0 days (n = 50 herds each). Partial cash flows were computed from revenues from sold milk, calves, and culled cows, and costs from feed and rearing youngstock. Greenhouse gas emissions were computed using a life cycle approach. A dry period of 28 days reduced milk production of the herd by 3.0% in years 2 through 5, compared with a dry period of 56 days. A dry period of 0 days reduced milk production by 3.5% in years 3 through 5, after a dip in milk production of 6.9% in year 2. On average, dry periods of 28 and 0 days reduced partial cash flows by €1,249 and €1,632 per herd per year, and increased greenhouse gas emissions by 0.7% and 0.5%, respectively. Considering the potential for enhancing cow welfare, these negative impacts of shortening or omitting the dry period seem justifiable, and they might even be offset by improved health.</p

    Effects of dry period length on production, cash flows and greenhouse gas emissions of the dairy herd : A dynamic stochastic simulation model

    No full text
    Shortening or omitting the dry period of dairy cows improves metabolic health in early lactation and reduces management transitions for dairy cows. The success of implementation of these strategies depends on their impact on milk yield and farm profitability. Insight in these impacts is valuable for informed decision-making by farmers. The aim of this study was to investigate how shortening or omitting the dry period of dairy cows affects production and cash flows at the herd level, and greenhouse gas emissions per unit of milk, using a dynamic stochastic simulation model. The effects of dry period length on milk yield and calving interval assumed in this model were derived from actual performance of commercial dairy cows over multiple lactations. The model simulated lactations, and calving and culling events of individual cows for herds of 100 cows. Herds were simulated for 5 years with a dry period of 56 (conventional), 28 or 0 days (n = 50 herds each). Partial cash flows were computed from revenues from sold milk, calves, and culled cows, and costs from feed and rearing youngstock. Greenhouse gas emissions were computed using a life cycle approach. A dry period of 28 days reduced milk production of the herd by 3.0% in years 2 through 5, compared with a dry period of 56 days. A dry period of 0 days reduced milk production by 3.5% in years 3 through 5, after a dip in milk production of 6.9% in year 2. On average, dry periods of 28 and 0 days reduced partial cash flows by €1,249 and €1,632 per herd per year, and increased greenhouse gas emissions by 0.7% and 0.5%, respectively. Considering the potential for enhancing cow welfare, these negative impacts of shortening or omitting the dry period seem justifiable, and they might even be offset by improved health.</p

    Metabolic adaptation during early lactation: key to cow health, longevity and a sustainable dairy production chain

    No full text
    Enhancing longevity by reducing involuntary culling and consequently increasing productive life and lifetime production of dairy cows is not only a strategy to improve a farm’s profit, but is also related to improved animal welfare. High rates of involuntary culling in dairy cows are currently attributed to fertility problems, mastitis and locomotive disorders. Disease incidence is high in particular in the early-lactation period. The high disease incidence in early lactation has been attributed to metabolic stress related to the high metabolic priority for lactation and the inability of the cow to adapt effectively to the new lactation. Several biological mechanisms interact in the peripartum period of dairy cows and can result in this inability to adapt effectively to lactation. Biological mechanisms reviewed are metabolic adaptation, oxidative stress, immune function and inflammation, and feed intake capacity. Although relationships between these mechanisms become increasingly clear, these relationships are complex and not yet completely understood. Appro- priate management of dairy cows in the peripartum period can facilitate cows to adapt to a new lactation. Nutritional and management strategies to ease adaptation are divided into strategies to restrict energy intake in the dry period, to improve energy intake in early lactation, alter repar- titioning of energy between milk and body tissue, and strategies to support fat or carbohydrate metabolism. The success of various strategies, however, is often hampered by the complexity of interactions and high between-cow variation. We advocate for a multidisciplinary approach to understand and manage adaptation to a new lactation aiming at an improvement of cow welfare and longevit
    corecore