5 research outputs found

    The effects of L-carnitine administration on energy metabolism in pregnant Halep (Damascus) goats

    No full text
    The aim of this study was to determine the effects of parenteral administration of L-carnitine on some biochemical parameters in Halep (Damascus) goats during the last month of pregnancy. L-carnitine was administrated to goats in group I (n = 13) by subcutaneous injections once a week during the last month of the pregnancy. Physiologic salt solution was administered to goats in group II (n = 12) by the same route during the same period. Differences of glucose concentration between groups were not significant (P > 0.05). Serum beta-hydroxybutyric acid (BHB) concentrations in both groups increased until parturition. However, differences between groups were not significant (P > 0.05). Concentration of serum NEFA (Non Esterified Fatty Acid) in group I was lower compared to group II 2 weeks before parturition (P 0.05). Level of glucose concentration in L-carnitine administered goats with twin kids was higher than the controls with twin kids in the 2(nd) (P < 0.01) and 3(rd) weeks (P < 0.05) before parturition. It was concluded that parenteral administration of L-carnitine might be a protective measure against pregnancy toxemia (ketosis) via increasing serum glucose concentration in goats with twin pregnancy

    Photocatalytically Active Graphitic Carbon Nitride as an Effective and Safe 2D Material for In Vitro and In Vivo Photodynamic Therapy

    No full text
    Thanks to its photocatalytic property, graphitic carbon nitride (g-C3N4) is a promising candidate in various applications including nanomedicine. However, studies focusing on the suitability of g-C3N4 for cancer therapy are very limited and possible underlying molecular mechanisms are unknown. Here, it is demonstrated that photoexcitation of g-C3N4 can be used effectively in photodynamic therapy, without using any other carrier or additional photosensitizer. Upon light exposure, g-C3N4 treatment kills cancer cells, without the need of any other nanosystem or chemotherapeutic drug. The material is efficiently taken up by tumor cells in vitro. The transcriptome and proteome of g-C3N4 and light treated cells show activation in pathways related to both oxidative stress, cell death, and apoptosis which strongly suggests that only when combined with light exposure, g-C3N4 is able to kill cancer cells. Systemic administration of the mesoporous form results in elimination from urinary bladder without any systemic toxicity. Administration of the material significantly decreases tumor volume when combined with local light treatment. This study paves the way for the future use of not only g-C3N4 but also other 2D nanomaterials in cancer therapy

    Does Varicocele Repair Improve Conventional Semen Parameters? A Meta-Analytic Study of Before-After Data

    No full text
    Purpose: The purpose of this meta-analysis is to study the impact of varicocele repair in the largest cohort of infertile males with clinical varicocele by including all available studies, with no language restrictions, comparing intra-person conventional semen parameters before and after the repair of varicoceles. Materials and Methods: The meta-analysis was performed according to PRISMA-P and MOOSE guidelines. A systematic search was performed in Scopus, PubMed, Cochrane, and Embase databases. Eligible studies were selected according to the PICOS model (Population: infertile male patients with clinical varicocele; Intervention: varicocele repair; Comparison: intra-person before-after varicocele repair; Outcome: conventional semen parameters; Study type: randomized controlled trials [RCTs], observational and case-control studies). Results: Out of 1,632 screened abstracts, 351 articles (23 RCTs, 292 observational, and 36 case-control studies) were includ-ed in the quantitative analysis. The before-and-after analysis showed significant improvements in all semen parameters after varicocele repair (except sperm vitality); semen volume: standardized mean difference (SMD) 0.203, 95% CI: 0.129-0.278; p<0.001; I2=83.62%, Egger's p=0.3329; sperm concentration: SMD 1.590, 95% CI: 1.474-1.706; p<0.001; I2=97.86%, Egger's p<0.0001; total sperm count: SMD 1.824, 95% CI: 1.526-2.121; p<0.001; I2=97.88%, Egger's p=0.0063; total motile sperm count: SMD 1.643, 95% CI: 1.318-1.968; p<0.001; I2=98.65%, Egger's p=0.0003; progressive sperm motil-ity: SMD 1.845, 95% CI: 1.537%-2.153%; p<0.001; I2=98.97%, Egger's p<0.0001; total sperm motility: SMD 1.613, 95% CI 1.467%-1.759%; p<0.001; l2=97.98%, Egger's p<0.001; sperm morphology: SMD 1.066, 95% CI 0.992%-1.211%; p<0.001; I2=97.87%, Egger's p=0.1864. Conclusions: The current meta-analysis is the largest to date using paired analysis on varicocele patients. In the current meta-analysis, almost all conventional semen parameters improved significantly following varicocele repair in infertile patients with clinical varicocele

    Does Varicocele Repair Improve Conventional Semen Parameters? A Meta-Analytic Study of Before-After Data

    No full text
    International audiencePurpose: The purpose of this meta-analysis is to study the impact of varicocele repair in the largest cohort of infertile males with clinical varicocele by including all available studies, with no language restrictions, comparing intra-person conventional semen parameters before and after the repair of varicoceles.Materials and methods: The meta-analysis was performed according to PRISMA-P and MOOSE guidelines. A systematic search was performed in Scopus, PubMed, Cochrane, and Embase databases. Eligible studies were selected according to the PICOS model (Population: infertile male patients with clinical varicocele; Intervention: varicocele repair; Comparison: intra-person before-after varicocele repair; Outcome: conventional semen parameters; Study type: randomized controlled trials [RCTs], observational and case-control studies).Results: Out of 1,632 screened abstracts, 351 articles (23 RCTs, 292 observational, and 36 case-control studies) were included in the quantitative analysis. The before-and-after analysis showed significant improvements in all semen parameters after varicocele repair (except sperm vitality); semen volume: standardized mean difference (SMD) 0.203, 95% CI: 0.129-0.278; p<0.001; I²=83.62%, Egger's p=0.3329; sperm concentration: SMD 1.590, 95% CI: 1.474-1.706; p<0.001; I²=97.86%, Egger's p<0.0001; total sperm count: SMD 1.824, 95% CI: 1.526-2.121; p<0.001; I²=97.88%, Egger's p=0.0063; total motile sperm count: SMD 1.643, 95% CI: 1.318-1.968; p<0.001; I²=98.65%, Egger's p=0.0003; progressive sperm motility: SMD 1.845, 95% CI: 1.537%-2.153%; p<0.001; I²=98.97%, Egger's p<0.0001; total sperm motility: SMD 1.613, 95% CI 1.467%-1.759%; p<0.001; l2=97.98%, Egger's p<0.001; sperm morphology: SMD 1.066, 95% CI 0.992%-1.211%; p<0.001; I²=97.87%, Egger's p=0.1864.Conclusions: The current meta-analysis is the largest to date using paired analysis on varicocele patients. In the current meta-analysis, almost all conventional semen parameters improved significantly following varicocele repair in infertile patients with clinical varicocele

    Does Varicocele Repair Improve Conventional Semen Parameters? A Meta-Analytic Study of Before-After Data

    No full text
    PURPOSE: The purpose of this meta-analysis is to study the impact of varicocele repair in the largest cohort of infertile males with clinical varicocele by including all available studies, with no language restrictions, comparing intra-person conventional semen parameters before and after the repair of varicoceles. MATERIALS AND METHODS: The meta-analysis was performed according to PRISMA-P and MOOSE guidelines. A systematic search was performed in Scopus, PubMed, Cochrane, and Embase databases. Eligible studies were selected according to the PICOS model (Population: infertile male patients with clinical varicocele; Intervention: varicocele repair; Comparison: intra-person before-after varicocele repair; Outcome: conventional semen parameters; Study type: randomized controlled trials [RCTs], observational and case-control studies). RESULTS: Out of 1,632 screened abstracts, 351 articles (23 RCTs, 292 observational, and 36 case-control studies) were included in the quantitative analysis. The before-and-after analysis showed significant improvements in all semen parameters after varicocele repair (except sperm vitality); semen volume: standardized mean difference (SMD) 0.203, 95% CI: 0.129-0.278; p\u3c0.001; I²=83.62%, Egger\u27s p=0.3329; sperm concentration: SMD 1.590, 95% CI: 1.474-1.706; p\u3c0.001; I²=97.86%, Egger\u27s p\u3c0.0001; total sperm count: SMD 1.824, 95% CI: 1.526-2.121; p\u3c0.001; I²=97.88%, Egger\u27s p=0.0063; total motile sperm count: SMD 1.643, 95% CI: 1.318-1.968; p\u3c0.001; I²=98.65%, Egger\u27s p=0.0003; progressive sperm motility: SMD 1.845, 95% CI: 1.537%-2.153%; p\u3c0.001; I²=98.97%, Egger\u27s p\u3c0.0001; total sperm motility: SMD 1.613, 95% CI 1.467%-1.759%; p\u3c0.001; l2=97.98%, Egger\u27s p\u3c0.001; sperm morphology: SMD 1.066, 95% CI 0.992%-1.211%; p\u3c0.001; I²=97.87%, Egger\u27s p=0.1864. CONCLUSIONS: The current meta-analysis is the largest to date using paired analysis on varicocele patients. In the current meta-analysis, almost all conventional semen parameters improved significantly following varicocele repair in infertile patients with clinical varicocele
    corecore