664 research outputs found
Emergent charge ordering in near half doped NaCoO
We have utilized neutron powder diffraction to probe the crystal structure of
layered NaCoO near the half doping composition of 0.46 over the
temperature range of 2 to 600K. Our measurements show evidence of a dynamic
transition in the motion of Na-ions at 300K which coincides with the onset of a
near zero thermal expansion in the in-plane lattice constants. The effect of
the Na-ordering on the CoO layer is reflected in the octahedral
distortion of the two crystallographically inequivalent Co-sites and is evident
even at high temperatures. We find evidence of a weak charge separation into
stripes of Co and Co,
below \Tco=150K. We argue that changes in the Na(1)-O bond lengths observed at
the magnetic transition at \tm=88K reflect changes in the electronic state of
the CoO layerComment: 7 pages, 6 figures, in press Phys. Rev.
Design methodology for 360° immersive video applications: the case study of a cultural heritage virtual tour
Three hundred sixty–degree (360°) immersive video applications for Head Mounted Display (HMD) devices offer great potential in providing engaging forms of experiential media solutions especially in Cultural Heritage education. Design challenges emerge though by this new kind of immersive media due to the 2D form of resources used for their construction, the lack of depth, the limited interaction and the need to address the sense of presence. In addition, the use of Virtual Reality (VR) headsets often causes nausea, or motion sickness effects imposing further implications in moderate motion design tasks. This paper introduces a methodological categorisation of tasks and techniques for the design of 360° immersive video applications. Following the design approach presented, a testbed application has been created as an immersive interactive virtual tour at the historical centre of the city of Rethymno in Crete, Greece, which has undergone user trials. Based on the analysis of the results of this study, a set of design guidelines for the implementation of 360° immersive video virtual tours is proposed
The use of a cyber campus to support teaching and collaboration: An observation approach
The research reported in this paper is work in progress describing the experiences of the authors while using a cyber campus to support online learn- ing collaborative activities and investigate if a Transactive Memory System can be developed among group members, working together within a cyber campus in several pre-set tasks
Rare earth magnetism and ferroelectricity in RMnO3
Magnetic rare earths R have been proven to have a significant effect on the
multiferroic properties of the orthorhombic manganites RMnO3. A re-examination
of previous results from synchrotron based x-ray scattering experiments
suggests that symmetric exchange striction between neighboring R and Mn ions
may account for the enhancement of the ferroelectric polarization in DyMnO3 as
well as the magnetic-field induced ferroelectricity in GdMnO3. In general,
adding a second magnetic species to a multiferroic material may be a route to
enhance its ferroelectric properties.Comment: Contribution to ICM 2009; accepted for publication in Journal of
Physics: Conference Serie
Hierarchical transfer learning for online recognition of compound actions
Recognising human actions in real-time can provide users with a natural user interface (NUI) enabling a range of innovative and immersive applications. A NUI application should not restrict users’ movements; it should allow users to transition between actions in quick succession, which we term as compound actions. However, the majority of action recognition researchers have focused on individual actions, so their approaches are limited to recognising single actions or multiple actions that are temporally separated. This paper proposes a novel online action recognition method for fast detection of compound actions. A key contribution is our hierarchical body model that can be automatically configured to detect actions based on the low level body parts that are the most discriminative for a particular action. Another key contribution is a transfer learning strategy to allow the tasks of action segmentation and whole body modelling to be performed on a related but simpler dataset, combined with automatic hierarchical body model adaption on a more complex target dataset. Experimental results on a challenging and realistic dataset show an improvement in action recognition performance of 16% due to the introduction of our hierarchical transfer learning. The proposed algorithm is fast with an average latency of just 2 frames (66 ms) and outperforms state of the art action recognition algorithms that are capable of fast online action recognition
Engaging immersive video consumers: Challenges regarding 360-degree gamified video applications
360-degree videos is a new medium that has gained the attention of the research community imposing challenges for creating more interactive and engaging immersive experiences. The purpose of this study is to introduce a set of technical and design challenges for interactive, gamified 360-degree mixed reality applications that immerse and engage users. The development of gamified applications refers to the merely incorporation of game elements in the interaction design process to attract and engage the user through playful interaction with the virtual world. The study presents experiments with the incorporation of series of game elements such as time pressure challenges, badges and user levels, storytelling narrative and immediate visual feedback to the interaction design logic of a mixed reality mobile gaming application that runs in an environment composed of 360-degree video and 3D computer generated objects. In the present study, the architecture and overall process for creating such an application is being presented along with a list of design implications and constraints. The paper concludes with future directions and conclusions on improving the level of immersion and engagement of 360-degree video consumers
Commensurate Dy magnetic ordering associated with incommensurate lattice distortion in orthorhombic DyMnO3
Synchrotron x-ray diffraction and resonant magnetic scattering experiments on
single crystal DyMnO3 have been carried out between 4 and 40 K. Below TN(Dy) =
5K, the Dy magnetic moments order in a commensurate structure with propagation
vector 0.5 b*. Simultaneous with the Dy magnetic ordering, an incommensurate
lattice modulation with propagation vector 0.905 b* evolves while the original
Mn induced modulation is suppressed and shifts from 0.78 b* to 0.81 b*. This
points to a strong interference of Mn and Dy induced structural distortions in
DyMnO3 besides a magnetic coupling between the Mn and Dy magnetic moments.Comment: submitted to Phys. Rev. B Rapid Communication
- …