231 research outputs found
Isotropic Wavelets: a Powerful Tool to Extract Point Sources from CMB Maps
It is the aim of this paper to introduce the use of isotropic wavelets to
detect and determine the flux of point sources appearing in CMB maps. The most
suited wavelet to detect point sources filtered with a Gaussian beam is the
Mexican Hat. An analytical expression of the wavelet coefficient obtained in
the presence of a point source is provided and used in the detection and flux
estimation methods presented. For illustration the method is applied to two
simulations (assuming Planck Mission characteristics) dominated by CMB (100
GHz) and dust (857 GHz) as these will be the two signals dominating at low and
high frequency respectively in the Planck channels. We are able to detect
bright sources above 1.58 Jy at 857 GHz (82% of all sources) and above 0.36 Jy
at 100 GHz (100% of all) with errors in the flux estimation below 25%. The main
advantage of this method is that nothing has to be assumed about the underlying
field, i.e. about the nature and properties of the signal plus noise present in
the maps. This is not the case in the detection method presented by Tegmark and
Oliveira-Costa 1998. Both methods are compared producing similar results.Comment: 6 pages. Accepted for publication in MNRA
Establishing the tolerability and performance of tamarind seed polysaccharide (TSP) in treating dry eye syndrome: results of a clinical study
BACKGROUND: One of the problems arising from available preparations for dry eye syndrome is the limited residence time of products on the ocular surface. In this paper, we look at an innovative new treatment for dry eye, tamarind seed polysaccharide (TSP). TSP possesses mucomimetic, mucoadhesive and pseudoplastic properties. The 'mucin-like' molecular structure of TSP is similar to corneal and conjunctival mucin 1 (MUC1), a transmembrane glycoprotein thought to play an essential role in protecting and wetting the corneal surface and may explain its increased retention on the eye surface. METHODS: The activity of TSP and hyaluronic acid (HA) in the treatment of dry eye syndrome was compared in an open-label, randomised, single-centre clinical study. Thirty patients were randomised to receive three or more applications per day of either TSP 0.5%, TSP 1% or HA 0.2% (Hyalistil™) over a period of 90 days. The primary objective of tolerability was assessed by visual analogue scale (VAS), scoring of specific symptoms and the incidence of adverse events. Secondary objectives included improvement in stability of the precorneal tear film, subjective symptoms and corneal and conjunctival staining. RESULTS: TSP 0.5% and 1% were comparable to HA 0.2% with regard to both primary and secondary objective parameters. TSP 1% showed benefits over HA 0.2% for the subjective symptoms; trouble blinking, ocular burning and foreign body sensation. CONCLUSION: This study suggests that TSP 0.5% and 1% offer at least equivalent relief to HA 0.2% for dry eye syndrome. All treatments demonstrated optimal tolerability and are suitable for frequent use in the therapy of dry eye. TSP 1% produced promising results in terms of improvements in certain patient symptoms and suggests benefits of the TSP formulation. This study paves the way for a larger study to further establish the performance and safety of TSP compared with HA and highlights the need to expand this therapeutic agent to a wider dry eye population
Comparison of various climate change projections of eastern Australian rainfall
The Australian eastern seaboard is a distinct climate entity from the interior of the continent, with different climatic influences on each side of the Great Dividing Range. Therefore, it is plausible that downscaling of global climate models could reveal meaningful regional detail, or ‘added value’, in the climate change signal of mean rainfall change in eastern Australia un-der future scenarios. However, because downscaling is typically done using a limited set of global climate models and downscaling methods, the results from a downscaling study may not represent the range of uncertainty in plausible projected change for a region suggested by the ensemble of host global climate models. A complete and unbiased representation of the plausible changes in the climate is essential in producing climate projections useful for future planning. As part of this aim it is important to quantify any differences in the change signal between global climate models and downscaling, and understand the cause of these differ-ences in terms of plausible added regional detail in the climate change signal, the impact of sub-sampling global climate models and the effect of the downscaling models themselves. Here we examine rainfall projections in eastern Australia under a high emissions scenario by late in the century from ensembles of global climate models, two dynamical downscaling models and one statistical downscaling model. We find no cases where all three downscaling methods show the same clear regional spatial detail in the change signal that is distinct from the host models. However, some downscaled projections suggest that the eastern seaboard could see little change in spring rainfall, in contrast to the substantial rainfall decrease inland. The change signal in the downscaled outputs is broadly similar at the large scale in the various model outputs, with a few notable exceptions. For example, the model median from dynamical downscaling projects a rainfall increase over the entirety of eastern Australia in autumn that is greater than the global models. Also, there are some instances where a downscaling method produces changes outside the range of host models over eastern Australia as a whole, thus ex-panding the projected range of uncertainty. Results are particularly uncertain for summer, where no two downscaling studies clearly agree. There are also some confounding factors from the model configuration used in downscaling, where the particular zones used for statis-tical models and the model components used in dynamical models have an influence on results and produce additional uncertainty
Gene Copy-Number Variation in Haploid and Diploid Strains of the Yeast Saccharomyces cerevisiae
The increasing ability to sequence and compare multiple individual genomes within a species has highlighted the fact that copy-number variation (CNV) is a substantial and underappreciated source of genetic diversity. Chromosome-scale mutations occur at rates orders of magnitude higher than base substitutions, yet our understanding of the mechanisms leading to CNVs has been lagging. We examined CNV in a region of chromosome 5 (chr5) in haploid and diploid strains of Saccharomyces cerevisiae. We optimized a CNV detection assay based on a reporter cassette containing the SFA1 and CUP1 genes that confer gene dosage-dependent tolerance to formaldehyde and copper, respectively. This optimized reporter allowed the selection of low-order gene amplification events, going from one copy to two copies in haploids and from two to three copies in diploids. In haploid strains, most events involved tandem segmental duplications mediated by nonallelic homologous recombination between flanking direct repeats, primarily Ty1 elements. In diploids, most events involved the formation of a recurrent nonreciprocal translocation between a chr5 Ty1 element and another Ty1 repeat on chr13. In addition to amplification events, a subset of clones displaying elevated resistance to formaldehyde had point mutations within the SFA1 coding sequence. These mutations were all dominant and are proposed to result in hyperactive forms of the formaldehyde dehydrogenase enzyme
Defining and Detecting Crossover-Interference Mutants in Yeast
The analysis of crossover interference in many creatures is complicated by the presence of two kinds of crossovers, interfering and noninterfering. In such creatures, the values of the traditional indicators of interference are subject not only to the strength of interference but also to the relative frequencies of crossing over contributed by the two kinds. We formalize the relationship among these variables and illustrate the possibilities and limitations of classical interference analysis with meiotic tetrad data from wild-type Saccharomyces cerevisiae and from mlh1 and ndj1 mutants
Fras1, a basement membrane-associated protein mutated in Fraser syndrome, mediates both the initiation of the mammalian kidney and the integrity of renal glomeruli
FRAS1 is mutated in some individuals with Fraser syndrome (FS) and the encoded protein is expressed in embryonic epidermal cells, localizing in their basement membrane (BM). Syndactyly and cryptophthalmos in FS are sequelae of skin fragility but the bases for associated kidney malformations are unclear. We demonstrate that Fras1 is expressed in the branching ureteric bud (UB), and that renal agenesis occurs in homozygous Fras1 null mutant blebbed (bl) mice on a C57BL6J background. In vivo, the bl/bl bud fails to invade metanephric mesenchyme which undergoes involution, events replicated in organ culture. The expression of glial cell line-derived neurotrophic factor and growth-differentiation factor 11 was defective in bl/bl renal primordia in vivo, whereas, in culture, the addition of either growth factor restored bud invasion into the mesenchyme. Mutant primordia also showed deficient expression of Hoxd11 and Six2 transcription factors, whereas the activity of bone morphogenetic protein 4, an anti-branching molecule, was upregulated. In wild types, Fras1 was also expressed by nascent nephrons. Foetal glomerular podocytes expressed Fras1 transcripts and Fras1 immunolocalized in a glomerular BM-like pattern. On a mixed background, bl mutants, and also compound mutants for bl and my, another bleb strain, sometimes survive into adulthood. These mice have two kidneys, which contain subsets of glomeruli with perturbed nephrin, podocin, integrin α3 and fibronectin expression. Thus, Fras1 protein coats branching UB epithelia and is strikingly upregulated in the nephron lineage after mesenchymal/epithelial transition. Fras1 deficiency causes defective interactions between the bud and mesenchyme, correlating with disturbed expression of key nephrogenic molecules. Furthermore, Fras1 may also be required for the formation of normal glomeruli
A Metalloproteinase Secreted by Streptococcus pneumoniae Removes Membrane Mucin MUC16 from the Epithelial Glycocalyx Barrier
The majority of bacterial infections occur across wet-surfaced mucosal epithelia, including those that cover the eye, respiratory tract, gastrointestinal tract and genitourinary tract. The apical surface of all these mucosal epithelia is covered by a heavily glycosylated glycocalyx, a major component of which are membrane-associated mucins (MAMs). MAMs form a barrier that serves as one of the first lines of defense against invading bacteria. While opportunistic bacteria rely on pre-existing defects or wounds to gain entry to epithelia, non opportunistic bacteria, especially the epidemic disease-causing ones, gain access to epithelial cells without evidence of predisposing injury. The molecular mechanisms employed by these non opportunistic pathogens to breach the MAM barrier remain unknown. To test the hypothesis that disease-causing non opportunistic bacteria gain access to the epithelium by removal of MAMs, corneal, conjunctival, and tracheobronchial epithelial cells, cultured to differentiate to express the MAMs, MUCs 1, 4, and 16, were exposed to a non encapsulated, non typeable strain of Streptococcus pneumoniae (SP168), which causes epidemic conjunctivitis. The ability of strain SP168 to induce MAM ectodomain release from epithelia was compared to that of other strains of S. pneumoniae, as well as the opportunistic pathogen Staphylococcus aureus. The experiments reported herein demonstrate that the epidemic disease-causing S. pneumoniae species secretes a metalloproteinase, ZmpC, which selectively induces ectodomain shedding of the MAM MUC16. Furthermore, ZmpC-induced removal of MUC16 from the epithelium leads to loss of the glycocalyx barrier function and enhanced internalization of the bacterium. These data suggest that removal of MAMs by bacterial enzymes may be an important virulence mechanism employed by disease-causing non opportunistic bacteria to gain access to epithelial cells to cause infection
Two-Component Elements Mediate Interactions between Cytokinin and Salicylic Acid in Plant Immunity
Recent studies have revealed an important role for hormones in plant immunity. We are now beginning to understand the contribution of crosstalk among different hormone signaling networks to the outcome of plant–pathogen interactions. Cytokinins are plant hormones that regulate development and responses to the environment. Cytokinin signaling involves a phosphorelay circuitry similar to two-component systems used by bacteria and fungi to perceive and react to various environmental stimuli. In this study, we asked whether cytokinin and components of cytokinin signaling contribute to plant immunity. We demonstrate that cytokinin levels in Arabidopsis are important in determining the amplitude of immune responses, ultimately influencing the outcome of plant–pathogen interactions. We show that high concentrations of cytokinin lead to increased defense responses to a virulent oomycete pathogen, through a process that is dependent on salicylic acid (SA) accumulation and activation of defense gene expression. Surprisingly, treatment with lower concentrations of cytokinin results in increased susceptibility. These functions for cytokinin in plant immunity require a host phosphorelay system and are mediated in part by type-A response regulators, which act as negative regulators of basal and pathogen-induced SA–dependent gene expression. Our results support a model in which cytokinin up-regulates plant immunity via an elevation of SA–dependent defense responses and in which SA in turn feedback-inhibits cytokinin signaling. The crosstalk between cytokinin and SA signaling networks may help plants fine-tune defense responses against pathogens
- …