144 research outputs found

    The mass and environmental dependence on the secular processes of AGN in terms of morphology, colour, and specific star-formation rate

    Full text link
    Galaxy mass and environment play a major role in the evolution of galaxies. In the transition from star-forming to quenched galaxies, Active galactic nuclei (AGN) have also a principal action. However, the connections between these three actors are still uncertain. In this work we investigate the effects of stellar mass and the large-scale environment (LSS), on the fraction of optical nuclear activity in a population of isolated galaxies, where AGN would not be triggered by recent galaxy interactions or mergers. As a continuation of a previous work, we focus on isolated galaxies to study the effect of stellar mass and the LSS in terms of morphology (early- and late-type), colour (red and blue), and specific star formation rate (quenched and star-forming). To explore where AGN activity is affected by the LSS we fix the stellar mass into low- and high-mass galaxies. We use the tidal strength parameter to quantify their effects. We found that AGN is strongly affected by stellar mass in 'active' galaxies (namely late-type, blue, and star-forming), however it has no influence for 'quiescent' galaxies (namely early-type, red, and quenched), at least for masses down to 1010 [M⊙]\rm 10^{10}\,[M_\odot]. In relation to the LSS, we found an increment on the fraction of SFN with denser LSS in low-mass star forming and red isolated galaxies. Regarding AGN, we find a clear increment of the fraction of AGN with denser environment in quenched and red isolated galaxies, independently of the stellar mass. AGN activity would be 'mass triggered' in 'active' isolated galaxies. This means that AGN is independent of the intrinsic property of the galaxies, but on its stellar mass. On the other hand, AGN would be 'environment triggered' in 'quiescent' isolated galaxies, where the fraction of AGN in terms of sSFR and colour increases from void regions to denser LSS, independently of its stellar mass.Comment: 14 pages, 9 figures (11 pages and 6 figures without appendix), accepted for publication in Astronomy & Astrophysic

    Isolated Galaxies versus Interacting Pairs with MaNGA

    Full text link
    We present preliminary results of the spectral analysis on the radial distributions of the star formation history in both, a galaxy merger and a spiral isolated galaxy observed with MaNGA. We find that the central part of the isolated galaxy is composed by older stellar population (∼\sim2 Gyr) than in the outskirts (∼\sim7 Gyr). Also, the time-scale is gradually larger from 1 Gyr in the inner part to 3 Gyr in the outer regions of the galaxy. In the case of the merger, the stellar population in the central region is older than in the tails, presenting a longer time-scale in comparison to central part in the isolated galaxy. Our results are in agreement with a scenario where spiral galaxies are built from inside-out. In the case of the merger, we find evidence that interactions enhance star formation in the central part of the galaxy.Comment: 7 pages, 2 figures. Proceedings of the EWASS-2015 special session Sp3, accepted for publication in Special Issue "3D View on Interacting and Post-Interacting Galaxies from Clusters to Voids" of open access journal "Galaxies

    Rere el vel de Safo: el París-Lesbos de Natalie Clifford Barney i Renée Vivien

    Full text link
    Treballs Finals de Grau d'Estudis Literaris, Facultat de Filologia, Universitat de Barcelona. Curs: 2021-2022. Tutor: Ernest Emili Marcos Hierro[cat] El següent treball es proposa analitzar la recreació, tant vital com literària, que les autores Natalie Clifford Barney i Renée Vivien van fer de Safo i de l’illa de Lesbos a principis del segle XX a la ciutat de París. Primerament, es traça, d’una banda, la recuperació de Safo al segle XIX i, de l’altra, s’il·lumina la seva figura des de la teoria i la crítica literària feminista per tal de col·locar-la com a baula primera de tota una genealogia literària lèsbica. Seguidament, s’exposa el cas de Barney i del seu saló literari com a epicentre de tot aquest moviment; i es destria la influència de Safo en l’obra de Vivien: concretament en Sapho (1903), Une femme m’apparut (1904) i La Dame à la louve (1904). Finalment, aquest estudi conclou proclamant la multiplicitat i futurabilitat de Safo i de la seva poesia.[eng] The aim of the following research is to analyse the recreation, both vital and literary, that writers Natalie Clifford Barney and Renée Vivien made of Sappho and the island of Lesbos at the early 20th century in Paris. Firstly, on the one hand, Sappho’s recovery during the 19th century is traced and, on the other hand, her figure is put under the light of feminist literary theory and criticism in order to place her as the origin of a lesbian literary genealogy. Right after, Barney’s literary salon is presented as the epicentre of this movement; afterwards, the influence of Sappho in Vivien’s works is revised: specifically, in Sapho (1903), Une femme m’apparut (1904) and La Dame à la louve (1904). Finally, this study concludes proclaiming Sappho’s and her poetry’s multiplicity and futurability

    The Eighteenth Data Release of the Sloan Digital Sky Surveys: Targeting and First Spectra from SDSS-V

    Get PDF
    The documentation workshop for DR18 ("DocuLlama") was held virtually in 2022 September, organized by Anne-Marie Weijmans and Gail Zasowski. This event was the main venue for the documentation of DR18, including significant progress on this paper and the website, and it was attended by Scott Anderson, Joel Brownstein, Joleen Carlberg, Niall Deacon, Nathan De Lee, John Donor, Tom Dwelly, Keith Hawkins, Jennifer Johnson, Sean Morrison, Jordan Raddick, Jose Sanchez-Gallego, Diogo Souto, Taylor Spoo, Ani Thakar, Nick Troup, Anne-Marie Weijmans, Gail Zasowski, William Zhang, three llamas, and an elderly goat named Nibblets. Funding for the Sloan Digital Sky Survey V has been provided by the Alfred P. Sloan Foundation, the HeisingSimons Foundation, the National Science Foundation, and the Participating Institutions. SDSS acknowledges support and resources from the Center for High-Performance Computing at the University of Utah. The SDSS website is www.sdss.org. SDSS is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS Collaboration, including the Carnegie Institution for Science, Chilean National Time Allocation Committee (CNTAC) ratified researchers, the Gotham Participation Group, Harvard University, The Johns Hopkins University, L'Ecole polytechnique federale de Lausanne (EPFL), Leibniz-Institut fur Astrophysik Potsdam (AIP), Max-Planck-Institut fur Astronomie (MPIA Heidelberg), Max-Planck-Institut fur Extraterrestrische Physik (MPE), Nanjing University, National Astronomical Observatories of China (NAOC), New Mexico State University, The Ohio State University, Pennsylvania State University, Smithsonian Astrophysical Observatory, Space Telescope Science Institute (STScI), the Stellar Astrophysics Participation Group, Universidad Nacional Autonoma de Mexico, University of Arizona, University of Colorado Boulder, University of Illinois at Urbana-Champaign, University of Toronto, University of Utah, University of Virginia, and Yale University. The Pan-STARRS1 Surveys (PS1) and the PS1 public science archive have been made possible through contributions by the Institute for Astronomy, the University of Hawaii, the Pan-STARRS Project Office, the Max Planck Society and its participating institutes, the Max Planck Institute for Astronomy, Heidelberg and the Max Planck Institute for Extraterrestrial Physics, Garching, The Johns Hopkins University, Durham University, the University of Edinburgh, the Queen's University Belfast, the Harvard-Smithsonian Center for Astrophysics, the Las Cumbres Observatory Global Telescope Network Incorporated, the National Central University of Taiwan, the Space Telescope Science Institute, the National Aeronautics and Space Administration under grant No. NNX08AR22G, issued through the Planetary Science Division of the NASA Science Mission Directorate, the National Science Foundation grant No. AST-1238877, the University of Maryland, Eotvos Lorand University (ELTE), the Los Alamos National Laboratory, and the Gordon and Betty Moore Foundation. This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. This work is based in part on observations made with the Spitzer Space Telescope, which was operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. This publication makes use of data products from the Wide-field Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration. This work presents results from the European Space Agency (ESA) space mission Gaia. Gaia data are being processed by the Gaia Data Processing and Analysis Consortium (DPAC). Funding for the DPAC is provided by national institutions, in particular the institutions participating in the Gaia MultiLateral Agreement (MLA). The Gaia mission website is https://www.cosmos.esa.int/gaia. The Gaia archive website is https://archives.esac.esa.int/gaia. The Legacy Surveys consist of three individual and complementary projects: the Dark Energy Camera Legacy Survey (DECaLS; Proposal ID #2014B-0404; PIs: David Schlegel and Arjun Dey), the Beijing-Arizona Sky Survey (BASS; NOAO Prop. ID #2015A-0801; PIs: Zhou Xu and Xiaohui Fan), and the Mayall z-band Legacy Survey (MzLS; Prop. ID #2016A-0453; PI: Arjun Dey). DECaLS, BASS, and MzLS together include data obtained, respectively, at the Blanco telescope, Cerro Tololo Inter-American Observatory, NSF's NOIRLab; the Bok telescope, Steward Observatory, University of Arizona; and the Mayall telescope, Kitt Peak National Observatory, NOIRLab. Pipeline processing and analyses of the data were supported by NOIRLab and the Lawrence Berkeley National Laboratory (LBNL). The Legacy Surveys project is honored to be permitted to conduct astronomical research on Iolkam Duaag (Kitt Peak), a mountain with particular significance to the Tohono Oaodham Nation. NOIRLab is operated by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation. LBNL is managed by the Regents of the University of California under contract to the U.S. Department of Energy. This project used data obtained with the Dark Energy Camera (DECam), which was constructed by the Dark Energy Survey (DES) collaboration. Funding for the DES Projects has been provided by the U.S. Department of Energy, the U.S. National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundacao Carlos Chagas Filho de Amparo, Financiadora de Estudos e Projetos, Fundacao Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Cientifico e Tecnologico and the Ministerio da Ciencia, Tecnologia e Inovacao, the Deutsche Forschungsgemeinschaft, and the Collaborating Institutions in the Dark Energy Survey. The Collaborating Institutions are Argonne National Laboratory, the University of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas-Madrid, the University of Chicago, University College London, the DES-Brazil Consortium, the University of Edinburgh, the Eidgenossische Technische Hochschule (ETH) Zurich, Fermi National Accelerator Laboratory, the University of Illinois at Urbana-Champaign, the Institut de Ciencies de l'Espai (IEEC/CSIC), the Institut de Fisica d'Altes Energies, Lawrence Berkeley National Laboratory, the Ludwig Maximilians Universitat Munchen and the associated Excellence Cluster Universe, the University of Michigan, NSF's NOIRLab, the University of Nottingham, the Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, the University of Sussex, and Texas A&M University. BASS is a key project of the Telescope Access Program (TAP), which has been funded by the National Astronomical Observatories of China, the Chinese Academy of Sciences (the Strategic Priority Research Program "The Emergence of Cosmological Structures," grant #XDB09000000), and the Special Fund for Astronomy from the Ministry of Finance. BASS is also supported by the External Cooperation Program of Chinese Academy of Sciences (grant #114A11KYSB20160057) and the Chinese National Natural Science Foundation (grants #12120101003 and #11433005). The Legacy Survey team makes use of data products from the Near-Earth Object Wide-field Infrared Survey Explorer (NEOWISE), which is a project of the Jet Propulsion Laboratory/California Institute of Technology. NEOWISE is funded by the National Aeronautics and Space Administration. The Legacy Surveys imaging of the DESI footprint is supported by the Director, Office of Science, Office of High Energy Physics of the U.S. Department of Energy, under Contract No. DE-AC02-05CH1123; by the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility under the same contract; and by the U.S. National Science Foundation, Division of Astronomical Sciences, under Contract No. AST-0950945 to NOAO. The national facility capability for SkyMapper has been funded through ARC LIEF grant LE130100104 from the Australian Research Council, awarded to the University of Sydney, the Australian National University, Swinburne University of Technology, the University of Queensland, the University of Western Australia, the University of Melbourne, Curtin University of Technology, Monash University, and the Australian Astronomical Observatory. SkyMapper is owned and operated by The Australian National University's Research School of Astronomy and Astrophysics. The survey data were processed and provided by the SkyMapper Team at ANU. The SkyMapper node of the All-Sky Virtual Observatory (ASVO) is hosted at the National Computational Infrastructure (NCI). The development and support of the SkyMapper node of the ASVO has been funded in part by Astronomy Australia Limited (AAL) and the Australian Government through the Commonwealth's Education Investment Fund (EIF) and National Collaborative Research Infrastructure Strategy (NCRIS), particularly the National eResearch Collaboration Tools and Resources (NeCTAR) and the Australian National Data Service (ANDS) Projects. This paper includes data collected by the TESS mission. Funding for the TESS mission is provided by NASA's Science Mission Directorate. We acknowledge the use of public data from the Swift data archive. Based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA. This research has made use of NASA's Astrophysics Data System Bibliographic Services.The eighteenth data release (DR18) of the Sloan Digital Sky Survey (SDSS) is the first one for SDSS-V, the fifth generation of the survey. SDSS-V comprises three primary scientific programs or "Mappers": the Milky Way Mapper (MWM), the Black Hole Mapper (BHM), and the Local Volume Mapper. This data release contains extensive targeting information for the two multiobject spectroscopy programs (MWM and BHM), including input catalogs and selection functions for their numerous scientific objectives. We describe the production of the targeting databases and their calibration and scientifically focused components. DR18 also includes & SIM;25,000 new SDSS spectra and supplemental information for X-ray sources identified by eROSITA in its eFEDS field. We present updates to some of the SDSS software pipelines and preview changes anticipated for DR19. We also describe three value-added catalogs (VACs) based on SDSS-IV data that have been published since DR17, and one VAC based on the SDSS-V data in the eFEDS field.National Aeronautics & Space Administration (NASA) NNX08AR22GSpanish GovernmentStellar Astrophysics Participation GroupAssociation of Universities for Research in Astronomy (AURA)Dark Energy Camera (DECam)Collaborating Institutions in the Dark Energy Surve

    The less significant role of large-scale environment than optical AGN in nearby, isolated elliptical galaxies

    Full text link
    The formation and evolution of elliptical galaxies in low-density environments are less understood than classical elliptical galaxies in high-density environments. Isolated galaxies are defined as galaxies without massive neighbors within scales of galaxy groups. The effect of the environment at several Mpc scales on their properties has been barely explored. Here we study the role of large-scale environment in some physical properties of 573 isolated elliptical galaxies out to z=0.08. We use three environmental estimators of the large-scale structure within a projected radius of 5 Mpc around isolated galaxies: the tidal strength parameter, the projected density eta_k, and the distance to the fifth nearest neighbor galaxy. We find 80% of galaxies at lower densities correspond to 'red and dead' elliptical galaxies. Blue and red galaxies do not tend to be located in different environments according to eta_k. Almost all the isolated ellipticals in the densest large-scale environments are red or quenched, where a third of them are low-mass galaxies. The percentage of isolated elliptical galaxies located in the AGN region of the BPT diagram is 64%. We have identified 33 blue, star-forming isolated ellipticals using both color and sSFR. Half of them are star-forming nuclei in the BPT diagram, which is 5% of the galaxies in this diagram. The large-scale environment is not playing the primary role to determine the color or sSFR of isolated elliptical galaxies. The large-scale environment seems to be negligible from a stellar mass scale around 10^10.6 Msun, probably because of the dominant presence of AGN at higher masses. For lower masses, the processes of cooling and infall of gas from large scales are very inefficient in ellipticals. AGN might also be an essential ingredient to keep most of the low-mass isolated elliptical galaxies quenched.Comment: 15 pages, 6 figures (10 pages and 4 figures without appendices). Accepted for publication in A&
    • …
    corecore