34 research outputs found

    Data Generated during the 2018 LAPSE-RATE Campaign: An Introduction and Overview

    Get PDF
    Unmanned aircraft systems (UASs) offer innovative capabilities for providing new perspectives on the atmosphere, and therefore atmospheric scientists are rapidly expanding their use, particularly for studying the planetary boundary layer. In support of this expansion, from 14 to 20 July 2018 the International Society for Atmospheric Research using Remotely piloted Aircraft (ISARRA) hosted a community flight week, dubbed the Lower Atmospheric Profiling Studies at Elevation – a Remotely-piloted Aircraft Team Experiment (LAPSE-RATE; de Boer et al., 2020a). This field campaign spanned a 1-week deployment to Colorado\u27s San Luis Valley, involving over 100 students, scientists, engineers, pilots, and outreach coordinators. These groups conducted intensive field operations using unmanned aircraft and ground-based assets to develop comprehensive datasets spanning a variety of scientific objectives, including a total of nearly 1300 research flights totaling over 250 flight hours. This article introduces this campaign and lays the groundwork for a special issue on the LAPSE-RATE project. The remainder of the special issue provides detailed overviews of the datasets collected and the platforms used to collect them. All of the datasets covered by this special issue have been uploaded to a LAPSE-RATE community set up at the Zenodo data archive (https://zenodo.org/communities/lapse-rate/, last access: 3 December 2020)

    A Bird’s Eye View: Development of an Operational ARM Unmanned Aerial Systems Capability for Atmospheric Research in Arctic Alaska

    Get PDF
    Unmanned aerial capabilities offer exciting new perspectives on the Arctic atmosphere and the US Department of Energy is working with partners to offer such perspectives to the research community. Thorough understanding of aerosols, clouds, boundary layer structure and radiation is required to improve representation of the Arctic atmosphere in weather forecasting and climate models. To develop such understanding, new perspectives are needed to provide details on the vertical structure and spatial variability of key atmospheric properties, along with information over difficult-to-reach surfaces such as newly-forming sea ice. Over the last three years, the US Department of Energy (DOE) has supported various flight campaigns using unmanned aircraft systems (UAS, also known as UAVs and drones) and tethered balloon systems (TBS) at Oliktok Point, Alaska. These activities have featured in-situ measurements of thermodynamic state, turbulence, radiation, aerosol properties, cloud microphysics and turbulent fluxes to provide a detailed characterization of the lower atmosphere. Alongside a suite of active and passive ground-based sensors and radiosondes deployed by the DOE Atmospheric Radiation Measurement (ARM) program through the third ARM Mobile Facility (AMF-3), these flight activities demonstrate the ability of such platforms to provide critically-needed information. In addition to providing new and unique datasets, lessons learned during initial campaigns have assisted toward the development of an exciting new community resource

    Design of Next Generation Unmanned Air Systems - Issues and Opportunities

    No full text

    On the Use of Unmanned Aircraft for Sampling Mesoscale Phenomena in the Preconvective Boundary Layer

    Get PDF
    The potential value of small unmanned aircraft systems (UAS) for monitoring the preconvective environment and providing useful information in real time to weather forecasters for evaluation at a National Weather Service (NWS) Forecast Office are addressed. The general goal was to demonstrate whether a combination of fixed-wing and rotary-wing UAS can provide detailed, accurate, and useful measurements of the boundary layer important for determining the potential for convection initiation (CI). Two field operations were held: a validation study in which the UAS data were compared with collocated measurements made by mobile rawinsondes and ground-based remote sensing systems and a real-time experiment held to evaluate the potential value of the UAS observations in an operationally relevant environment. Vertical profile measurements were made by the rotary-wing UAS at two mesonet sites every 30 min up to 763 m (2500 ft) AGL in coordination with fixed-wing UAS transects between the sites. The results showed the ability of the fixed-wing UAS to detect significant spatial gradients in temperature, moisture, and winds. Although neither of two different types of rotary-wing UAS measurements were able to strictly meet the requirements for sensor accuracy, one of the systems came very close to doing so. UAS sensor accuracy, methods for retrieving the winds, and challenges in assessing the representativeness of the observations are highlighted. Interesting mesoscale phenomena relevant to CI forecasting needs are revealed by the UAS. Issues needing to be overcome for UAS to ever become a NOAA operational observing system are discussed

    Comparison of Minimum Length Nozzles

    No full text

    Dense Gas Flow in Minimum Length Nozzles

    No full text

    Two-dimensional shock tube flow for dense gases

    No full text
    corecore