8 research outputs found

    Analysis of a new begomovirus unveils a composite element conserved in the CP gene promoters of several Geminiviridae genera: Clues to comprehend the complex regulation of late genes

    Get PDF
    "A novel bipartite begomovirus, Blechum interveinal chlorosis virus (BleICV), was characterized at the genome level. Comparative analyses revealed that BleICV coat protein (CP) gene promoter is highly divergent from the equivalent region of other begomoviruses (BGVs), with the single exception of Tomato chino La Paz virus (ToChLPV) with which it shares a 23-bp phylogenetic footprint exhibiting dyad symmetry. Systematic examination of the homologous CP promoter segment of 132 New World BGVs revealed the existence of a quasi-palindromic DNA segment displaying a strongly conserved ACTT-(N7)-AAGT core. The spacer sequence between the palindromic motifs is constant in length, but its sequence is highly variable among viral species, presenting a relaxed consensus (TT)GGKCCCY, which is similar to the Conserved Late Element or CLE (GTGGTCCC), a putative TrAP-responsive element. The homologous CP promoter region of Old World BGVs exhibited a distinct organization, with the putative TATA-box overlapping the left half of the ACTT-N7 composite element. Similar CP promoter sequences, dubbed “TATA-associated composite element” or TACE, were found in viruses belonging to different Geminiviridae genera, hence hinting unsuspected evolutionary relationships among those lineages. To get cues about the TACE function, the regulatory function of the CLE was explored in distinct experimental systems. Transgenic tobacco plants harboring a GUS reporter gene driven by a promoter composed by CLE multimers expressed high beta-glucuronidase activity in absence of viral factors, and that expression was increased by begomovirus infection. On the other hand, the TrAP-responsiveness of a truncated CP promoter of Tomato golden mosaic virus (TGMV) was abolished by site-directed mutation of the only CLE present in it, whereas the artificial addition of one CLE to the -125 truncated promoter strongly enhanced the transactivation level in tobacco protoplasts. These results indicate that the CLE is a TrAP-responsive element, hence providing valuable clues to interpret the recurrent association of the CLE with the TACE. On the basis of the aforesaid direct evidences and the insights afforded by the extensive comparative analysis of BleICV CP promoter, we propose that the TACE might be involved in the TrAP-mediated derepression of CP gene in vascular tissues.

    Evaluation of a SUMO E2 conjugating enzyme involved in resistance to Clavibacter michiganensis subsp. michiganensis in Solanum peruvianum, through a tomato mottle virus VIGS assay

    Get PDF
    "Clavibacter michiganensis subsp. michiganensis (Cmm) causes bacterial wilt and canker of tomato. Currently, no Solanum lycopersicum resistant varieties are commercially available, but some degree of Cmm resistance has been identified in Solanum peruvianurn. Previous research showed up regulation of a SUMO E2 conjugating enzyme (SCEI) transcript in S. peruvianum compared to S. lycopersicum following infection with Cmm. In order to test the role of SCEI in resistance to Cmm, a fragment of SCEI from S. peruvianum was cloned into a novel virus induced gene silencing (VIGS) vector based on the geminivirus, Tomato Mottle Virus (ToMoV). Using biolistic inoculation, the ToMoV-based VIGS vector was shown to be effective in S. peruvianum by silencing the magnesium chelatase gene, resulting in leaf bleaching. VIGS with the ToMoV_SCEI construct resulted in 61% silencing of SCEI in leaves of S. peruvianum as determined by quantitative RT-PCR. The SCEI -silenced plants showed unilateral wilting (15 dpi) and subsequent death (20 dpi) of the entire plant after Cmm inoculation, whereas the empty vector-treated plants only showed wilting in the Cmm-inoculated leaf. The SCEI-silenced plants showed higher Cmm colonization and an average of 4.5 times more damaged tissue compared to the empty vector control plants. SCEI appears to play an important role in the innate immunity of S. peruvianum against Cmm, perhaps through the regulation of transcription factors, leading to expression of proteins involved in salicylic acid dependent defense responses.

    mtDNA Haplogroup A Enhances the Effect of Obesity on the Risk of Knee OA in a Mexican Population

    Get PDF
    [Abstract] To evaluate the influence of mitochondrial DNA haplogroups on the risk of knee OA in terms of their interaction with obesity, in a population from Mexico. Samples were obtained from (n = 353) knee OA patients (KL grade ≥ I) and (n = 364) healthy controls (KL grade = 0) from Mexico city and Torreon (Mexico). Both Caucasian and Amerindian mtDNA haplogroups were assigned by single base extension assay. A set of clinical and demographic variables, including obesity status, were considered to perform appropriate statistical approaches, including chi-square contingency tables, regression models and interaction analyses. To ensure the robustness of the predictive model, a statistical cross-validation strategy of B = 1000 iterations was used. All the analyses were performed using boot, GmAMisc and epiR package from R software v4.0.2 and SPSS software v24. The frequency distribution of the mtDNA haplogroups between OA patients and healthy controls for obese and non-obese groups showed the haplogroup A as significantly over-represented in knee OA patients within the obese group (OR 2.23; 95% CI 1.22-4.05; p-value = 0.008). The subsequent logistic regression analysis, including as covariate the interaction between obesity and mtDNA haplogroup A, supported the significant association of this interaction (OR 2.57; 95% CI 1.24-5.32; p-value = 0.011). The statistical cross-validation strategy confirmed the robustness of the regression model. The data presented here indicate a link between obesity in knee OA patients and mtDNA haplogroup A.This work is supported by Grants from Fondo de Investigación Sanitaria (PI17/00210, PI16/02124, PI20/00614, RETIC-RIER-RD16/0012/0002 and PRB3-ISCIII-PT17/0019/0014) integrated in the National Plan for Scientific Program, Development and Technological Innovation 2013–2016 and funded by the ISCIII-General Subdirection of Assessment and Promotion of Research-European Regional Development Fund (FEDER) “A way of making Europe” and Grant IN607A2017/11 from Xunta de Galicia. The authors further acknowledge AE CICA-INIBIC (ED431E 2018/03) for financial support. IRP is supported by Contrato Miguel Servet-II Fondo de Investigación Sanitaria (CPII17/00026) and AD-S is supported by Grant IN606A-2018/023 from Xunta de Galicia, Spain. The Biomedical Research Networking Center (CIBER) is an initiative from Instituto de Salud Carlos III (ISCIII)Xunta de Galicia; IN607A2017/11Xunta de Galicia; ED431E 2018/03Xunta de Galicia; IN606A-2018/02

    Transformant strains of the mycoparasite fungus Trichoderma spp. which promote the growth and resistance to fungal and bacterial diseases in solanaceae plants, composition containing the same, application process and use thereof

    No full text
    "La presente invención describe y reclama cepas transformantes novedosas del hongo Trichoderma ssp., capaces de promover el crecimiento y la resistencia a fitopatógenos en plantas de interés agronómico de una manera significativa en comparación con las cepas convencionales. La utilización de estas cepas disminuyen considerablemente el uso abonos y de pesticidas químicos cuya fabricación y uso dañan el medio ambiente y la salud humana.""The present invention describes and claims novel transformant strains of the Trichoderma ssp fungus, which promote the growth and resistance to phytopathogens in plants of agricultural interests in a significant manner unlike traditional strains. The use of said strains reduces in a substantial manner the application of manures and chemical pesticides which manufacture and usage damage the environment and human health.

    Expression analysis of the Arabidopsis thaliana AtSpen2 gene, and its relationship with other plant genes encoding Spen proteins

    No full text
    "Proteins of the Split ends (Spen) family are characterized by an N-terminal domain, with one or more RNA recognition motifs and a SPOC domain. In Arabidopsis thaliana, the Spen protein FPA is involved in the control of flowering time as a component of an autonomous pathway independent of photoperiod. The A. thaliana genome encodes another gene for a putative Spen protein at the locus At4g12640, herein named AtSpen2. Bioinformatics analysis of the AtSPEN2 SPOC domain revealed low sequence similarity with the FPA SPOC domain, which was markedly lower than that found in other Spen proteins from unrelated plant species. To provide experimental information about the function of AtSpen2, A. thaliana plants were transformed with gene constructs of its promoter region with uidA::gfp reporter genes; the expression was observed in vascular tissues of leaves and roots, as well as in ovules and developing embryos. There was absence of a notable phenotype in knockout and overexpressing lines, suggesting that its function in plants might be specific to certain endogenous or environmental conditions. Our results suggest that the function of Atspen2 diverged from that of fpa due in part to their different transcription expression pattern and divergence of the regulatory SPOC domain.

    Evaluation of a SUMO E2 conjugating enzyme involved in resistance to Clavibacter michiganensis subsp. michiganensis in Solanum peruvianum, through a tomato mottle virus VIGS assay

    Get PDF
    Clavibacter michiganensis subsp. michiganensis (Cmm) causes bacterial wilt and canker of tomato. Currently, no Solanum lycopersicum resistant varieties are commercially available, but some degree of Cmm resistance has been identified in Solanum peruvianum. Previous research showed up-regulation of a SUMO E2 conjugating enzyme (SCEI) transcript in resistant S. peruvianum compared to susceptible S. lycopersicum following infection by Cmm. In order to test the role of SCEI in resistance to Cmm, a fragment of the gene from S. peruvianum was cloned into a novel virus-induced gene-silencing (VIGS) vector based on the geminivirus Tomato Mottle Virus (ToMoV). Using biolistic inoculation, the ToMoV-based VIGS vector was shown to be effective in S. peruvianum by silencing the magnesium chelatase gene, which resulted in leaf bleaching. The ToMoV_SCEI construct resulted in approx. 61% silencing of SCEI in leaves of S. peruvianum as determined by quantitative RT-PCR. VIGS of SCEI in S. peruvianum resulted in unilateral wilting (15 dpi) and subsequent death (20 dpi) of the entire plant after Cmm inoculation, whereas empty vector-treated plants only showed wilting in the Cmm-inoculated leaf. SCEI-silenced plants also showed higher Cmm colonization with an average of 4.5 times more damaged tissue compared to the empty vector control plants. SCEI appears to play an important role in the innate immunity of S. peruvianum against Cmm, perhaps through the regulation of WRKY transcription factors, which may lead to expression of proteins involved in salicylic acid-dependent defense responses

    Biochemical Markers in Osteoarthritis

    No full text
    Osteoarthritis (OA) is a chronic disease with a long silent period. The hallmarks of osteoarthritis (OA) include cartilage loss that leads to joint destruction and severe impairment of mobility. Involvement of subchondral bone and synovial tissue is well documentated. OA is the most prevalent cause of disability in the aging population of developing countries.The diagnosis is generally based on clinical symptoms and radiographic changes. However, X-ray has a poor sensitivity that does not allow an early detection of OA or the monitoring of joint damage progression. Another imaging technique is the magnetic resonance imaging (MRI). Although this medical test is more sensitive than plain radiography, it is more expensive and can´t be routinely applied to many patients. The limitations offered by such tools have cleared the need to identify more specific biological markers, which evaluate quantitative variations in joint remodeling, diagnostic, prognostic and efficacy of intervention. OA affects cartilage, subchondral bone, and synovium. Thus, molecules derived from these tissues could be considered as candidates for biological markers in OA, as these molecules have a role in metabolic processes in the joints. Recent data indicates that some markers could be valuable to diagnose, predict OA progression and assess therapeutic response; however, the interpretation of results should be careful because tissue specificity, clearance rates and circadian variations are still under investigation in most of biomarkers. Although biomarkers could be considered valuable tools, they still have some limitations in clinical practice and it is necessary to develop and validate specific and sensitive biomarkers
    corecore