2 research outputs found

    Assessing the spatiotemporal patterns and impacts of droughts in the Orinoco river basin using earth observations data and surface observations

    Get PDF
    Droughts impact the water cycle, ecological balance, and socio-economic development in various regions around the world. The Orinoco River Basin is a region highly susceptible to droughts. The basin supports diverse ecosystems and supplies valuable resources to local communities. We assess the spatiotemporal patterns and impacts of droughts in the basin using remote sensing data and surface observations. We use monthly precipitation (P), air temperature near the surface (T2M), enhanced vegetation index (EVI) derived from Earth observations, and average daily flow (Q) data to quantify drought characteristics and impacts. We also investigated the association between drought and global warming by correlating the drought intensity and the percentage of dry area with sea surface temperature (SST) anomalies in the Pacific (Niño 3.4 index), Atlantic (North Atlantic Index [NATL]), and South Atlantic Index [SATL]) oceans. We evaluate the modulating effect of droughts on the hydrological regime of the most relevant tributaries by calculating the trend and significance of the regional standardized precipitation index (SPI) and percentage area affected by dry conditions. El Niño events worsen the region’s drought conditions (SPI vs. Niño 3.4 index, r = −0.221), while Atlantic SST variability has less influence on the basin’s precipitation regime (SPI vs. NATL and SATL, r = 0.117 and −0.045, respectively). We also found that long-term surface warming trends aggravate drought conditions (SPI vs. T2M anomalies, r = −0.473), but vegetation greenness increases despite high surface temperatures (SPI vs. EVI anomalies, r = 0.284). We emphasize the irregular spatial-temporal patterns of droughts in the region and their profound effects on the ecological flow of rivers during prolonged hydrological droughts. This approach provides crucial insights into potential implications for water availability, agricultural productivity, and overall ecosystem health. Our study underlines the urgent need for adaptive management strategies to mitigate the adverse effects of droughts on ecosystems and human populations. The insights derived from our study have practical implications for developing strategies to address the impacts of droughts and ensure the protection of this ecologically significant region

    Warming and wetting signals emerging from analysis of changes in climate extreme indices over South America

    No full text
    Here we show and discuss the results of an assessment of changes in both area-averaged and station-based climate extreme indices over South America (SA) for the 1950-2010 and 1969-2009 periods using high-quality daily maximum and minimum temperature and precipitation series. A weeklong regional workshop in Guayaquil (Ecuador) provided the opportunity to extend the current picture of changes in climate extreme indices over SA.Our results provide evidence of warming and wetting across the whole SA since the mid-20th century onwards. Nighttime (minimum) temperature indices show the largest rates of warming (e.g. for tropical nights, cold and warm nights), while daytime (maximum) temperature indices also point to warming (e.g. for cold days, summer days, the annual lowest daytime temperature), but at lower rates than for minimums. Both tails of night-time temperatures have warmed by a similar magnitude, with cold days (the annual lowest nighttime and daytime temperatures) seeing reductions (increases). Trends are strong and moderate (moderate to weak) for regional-averaged (local) indices, most of them pointing to a less cold SA during the day and warmer night-time temperatures.Regionally-averaged precipitation indices show clear wetting and a signature of intensified heavy rain events over the eastern part of the continent. The annual amounts of rainfall are rising strongly over south-east SA (26.41. mm/decade) and Amazonia (16.09. mm/decade), but north-east Brazil and the western part of SA have experienced non-significant decreases. Very wet and extremely days, the annual maximum 5-day and 1-day precipitation show the largest upward trends, indicating an intensified rainfall signal for SA, particularly over Amazonia and south-east SA. Local trends for precipitation extreme indices are in general less coherent spatially, but with more general spatially coherent upward trends in extremely wet days over all SA. © 2012 Elsevier B.V
    corecore