407 research outputs found

    Review of Laser Ablation Process for Single Wall Carbon Nanotube Production

    Get PDF
    Different types of lasers are now routinely used to prepare single wall carbon nanotubes (SWCNTs). The original method developed by researchers at Rice University utilized a "double pulse laser oven" process. A graphite target containing about 1 atomic percent of metal catalysts is ablated inside a 1473K oven using laser pulses (10 ns pulse width) in slow flowing argon. Two YAG lasers with a green pulse (532 nm) followed by an IR pulse (1064 nm) with a 50 ns delay are used for ablation. This set up produced single wall carbon nanotube material with about 70% purity having a diameter distribution peaked around 1.4 nm. The impurities consist of fullerenes, metal catalyst clusters (10 to 100 nm diameter) and amorphous carbon. The rate of production with the initial set up was about 60 mg per hour with 10Hz laser systems. Several researchers have used variations of the lasers to improve the rate, consistency and study effects of different process parameters on the quality and quantity of SWCNTs. These variations include one to three YAG laser systems (Green, Green and IR), different pulse widths (nano to microseconds as well as continuous) and different laser wavelengths (Alexandrite, CO, CO2, free electron lasers in the near to far infrared). It is noted that yield from the single laser (Green or IR) systems is only a fraction of the two laser systems. The yield seemed to scale up with the repetition rate of the laser systems (10 to 60 Hz) and depended on the beam uniformity and quality of the laser pulses. The shift to longer wavelength lasers (free electron, CO and CO2) did not improve the quality, but increased the rate of production because these lasers are either continuous (CW) or high repetition rate pulses (kHz to MHz). The average power and the peak power of the lasers seem to influence the yields. Very high peak powers (MegaWatts per square centimeter) are noted to increase ablation of bigger particles with reduced yields of SWCNTs. Increased average powers seem to help the conversion of the carbon from target into vapor phase to improve formation of nanotubes. The use of CW far infrared lasers reduced the need for the oven, at the expense of controlled ablation. Some of these variations are tried with different combinations and concentrations of metal catalysts (Nickel with Cobalt, Iron, Palladium and Platinum) different buffer gases (e.g. Helium); with different oven temperatures (Room temperature to 1473K); under different flow conditions (1 to 1000 kPa) and even different porosities of the graphite targets. It is to be noted that the original Cobalt and Nickel combination worked best, possibly because of improved carbonization with stable crystalline phases. The mean diameter and yield seemed to increase with increasing oven temperatures. Thermal conductivity of the buffer gas and flow conditions dictate the quality as well as quantity of the SWCNTs. Faster flows, lower pressures and heavier gases seem to increase the yields. This review will attempt to cover all these variations and their relative merits. Possible growth mechanisms under these different conditions will also be discussed

    Demonstration of the feasibility of laser induced fluorescence for arc jet flow diagnostics

    Get PDF
    Laser Induced Fluorescence (LIF) studies are carried out on nitric oxide and oxygen molecules in the arc jet flows at the NASA Johnson Space Center Reentry Testing Facility. Measurements are taken in the free stream and from a blunt body shock layer. Tests are performed under different flow conditions to determine the feasibility and sensitivity of the LIF technique for various species. This is developed as a part of high enthalpy flow diagnostics and will be useful to elucidate the rotational and vibrational temperatures. Adequate sensitivity for the detection of O(2) and NO is demonstrated. Proposed improvements of the existing system are presented

    Secure Multicast Routing Protocol in Manets Using Efficient ECGDH Algorithm

    Get PDF
    An Ad-hoc Network covers a set of autonomous mobile nodes that communicates through wireless communication in an infrastructure-less environment. Mostly MANETs are used in group communication mechanisms like military applications, emergency search, rescue operations, vehicular ad-hoc communications and mining operations etc. In such type of networks, group communication is takes place by multicasting technique. Communication and collaboration is necessary among the nodes in the groups in multicast protocols. PUMA has the best multicast routing protocol compared to tree and mesh based multicast protocols although it suffers from security issues. PUMA mainly suffers from Man In The middle attack. MITM attack generates traffic flow, drop the packets and miscommunicate the neighbor nodes with false hop count. So defending from MITM attack we designed a new mechanism called Elliptic Curve Group Diffie-Hellman (ECGDH). This paper compares results of PUMA [1] routing protocol with legitimate, under attack and after providing security against attack. Finally we observed ECGDH [2] gives efficient results even attack has happened

    Thermogravimetric Analysis of Single-Wall Carbon Nanotubes

    Get PDF
    An improved protocol for thermogravimetric analysis (TGA) of samples of single-wall carbon nanotube (SWCNT) material has been developed to increase the degree of consistency among results so that meaningful comparisons can be made among different samples. This improved TGA protocol is suitable for incorporation into the protocol for characterization of carbon nanotube material. In most cases, TGA of carbon nanotube materials is performed in gas mixtures that contain oxygen at various concentrations. The improved protocol is summarized

    In-Situ Diagnostics of Carbon Nanotube Production by Laser Ablation

    Get PDF
    This presentation involves emission and laser induced fluorescence (LIP) data obtained during carbon nanotube production by double pulse laser oven method. Recent LIP data of nickel indicate longer decay (of the order of few milliseconds) of nickel atomic vapor. This contrasts with less than a millisecond decays of C2 and C3 observed in the plume. The possible role of nickel in the kinetics of carbon nanotube formation will be discussed. Evolution of the laser ablated plume is recorded as plume images which are correlated with the transient emission and LIP dat

    Cognitive Assessment in Asymptomatic COVID-19 Subjects

    Get PDF
    Background Neurological features of COVID-19 have been reported in addition to the respiratory manifestations, but cognitive dysfunction has been scarcely described. And cognitive assessment has not been studied in asymptomatic subjects. Method We compared the cognitive assessment scores between asymptomatic SARS-CoV-2 infected subjects with that of controls to detect mild cognitive impairment by the Montreal Cognitive Assessment test. Result Asymptomatic COVID-19 subjects secured lower scores in certain domains of the MoCA in comparison with the controls. The domains were visuoperception (2.4±0.7 vs2.8±0.7, p=0.032), naming (3.6±0.5 vs3.9±0.2, p=0.016) and fluency (0.9±0.6 vs1.6±0.7, p=<0.001). Also, older aged COVID-19 positive subjects scored lower in the MoCA when compared to the younger people. Conclusion Our study shows that even otherwise asymptomatic COVID-19 subjects have cognitive deficits in certain subdomains and suggests the need for a detailed psychometric assessment especially in the elderly population

    Carbon Nanotube Material Quality Assessment

    Get PDF
    The nanomaterial activities at NASA Johnson Space Center focus on carbon nanotube production, characterization and their applications for aerospace systems. Single wall carbon nanotubes are produced by arc and laser methods. Characterization of the nanotube material is performed using the NASA JSC protocol developed by combining analytical techniques of SEM, TEM, UV-VIS-NIR absorption, Raman, and TGA. A possible addition of other techniques such as XPS, and ICP to the existing protocol will be discussed. Changes in the quality of the material collected in different regions of the arc and laser production chambers is assessed using the original JSC protocol. The observed variations indicate different growth conditions in different regions of the production chambers

    Parametric Study of Carbon Nanotube Production by Laser Ablation Process

    Get PDF
    Carbon nanotubes form a new class of nanomaterials that are presumed to have extraordinary mechanical, electrical and thermal properties. The single wall nanotubes (SWNTs) are estimated to be 100 times stronger than steel with 1/6th the weight; electrical carrying capacity better than copper and thermal conductivity better than diamond. Applications of these SWNTs include possible weight reduction of aerospace structures, multifunctional materials, nanosensors and nanoelectronics. Double pulsed laser vaporization process produces SWNTs with the highest percentage of nanotubes in the output material. The normal operating conditions include a green laser pulse closely followed by an infrared laser pulse. Lasers ab late a metal-containing graphite target located in a flow tube maintained in an oven at 1473K with argon flow of 100 sccm at a 500 Torr pressure. In the present work a number of production runs were carried out, changing one operating condition at a time. We have studied the effects of nine parameters, including the sequencing of the laser pulses, pulse separation times, laser energy densities, the type of buffer gas used, oven temperature, operating pressure, flow rate and inner flow tube diameters. All runs were done using the same graphite target. The collected nanotube material was characterized by a variety of analytical techniques including scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman and thermo gravimetric analysis (TGA). Results indicate trends that could be used to optimize the process and increase the efficiency of the production process
    corecore