6,723 research outputs found
Development of a general purpose airborne simulator
Variable stability system development for General Purpose Airborne Simulator /GPAS
A perturbative approach to the spectral zeta functions of strings, drums and quantum billiards
We have obtained an explicit expression for the spectral zeta functions and
for the heat kernel of strings, drums and quantum billiards working to third
order in perturbation theory, using a generalization of the binomial theorem to
operators. The perturbative parameter used in the expansion is either the small
deformation of a reference domain (for instance a square), or a small variation
of the density around a constant value (in two dimensions both cases can
apply). This expansion is well defined even in presence of degenerations of the
unperturbed spectrum. We have discussed several examples in one, two and three
dimensions, obtaining in some cases the analytic continuation of the series,
which we have then used to evaluate the corresponding Casimir energy. For the
case of a string with piecewise constant density, subject to different boundary
conditions, and of two concentric cylinders of very close radii, we have
reproduced results previously published, thus obtaining a useful check of our
method.Comment: 23 pages, 5 figures, 2 tables; version accepted on Journal of
Mathematical Physic
Within the heart's darkness:The role of emotions in Arendt's political thought
Interest in the political relevance of the emotions is growing rapidly. In light of this, Hannah Arendt’s claim that the emotions are apolitical has come under renewed fire. But many critics have misunderstood her views on the relationship between individuals, emotions and the political. This paper addresses this issue by reconstructing the conceptual framework through which Arendt understands the emotions. Arendt often describes the heart – where the emotions reside – as a place of darkness. I begin by tracing this metaphor through her work to demonstrate that it is meant to convey the inherently uncertain nature of emotions rather than a devaluation of them. I proceed to challenge the notion that Arendt adopts the Enlightenment dichotomy between reason and emotion. In fact, she rejects both as a basis for politics. However, she does identify some constructive roles for the emotions. I argue that fear is intrinsically connected to courage – the principal political virtue – in Arendt’s philosophy. In light of my discussion, I then reinterpret the role of compassion and pity in On Revolution, concluding that Arendt’s insights can help us avoid the potential pitfalls of the contemporary project to recuperate the emotions in politics
A Method for Direct Localized Sound Speed Estimates Using Registered Virtual Detectors
Accurate sound speed estimates are desirable in a number of fields. In an effort to increase the spatial resolution of sound speed estimates, a new method is proposed for direct measurement of sound speed between arbitrary spatial locations. The method uses the sound speed estimator developed by Anderson and Trahey. Their least squares fit of the received waveform’s curvature provides an estimate of the wave’s point of origin. The point of origin and the delay profile calculated from the fit are used to arrive at a spatially registered virtual detector. Between a pair of registered virtual detectors, a spherical wave is propagated. By beamforming the data, the time-of-flight between the two virtual sources can be calculated. From this information, the local sound speed can be estimated. Validation of the estimator is made using phantom and simulation data. The set of test phantoms consisted of both homogeneous and inhomogeneous media. Several different inhomogeneous phantom configurations were used for the physical validation. The simulation validation focused on the limits of target depth and signal-to-noise ratio on virtual detector registration. The simulations also compare the impact of two- and three-layer inhomogeneous media. The phantom results varied based on signal-to-noise ratio and geometry. The results for all cases were generally less than 1% mean error and standard deviation. The simulation results varied somewhat with depth and F/#, but primarily, they varied with signal-to-noise ratio and geometry. With two-layer geometries, the algorithm has a worst-case spatial registration bias of 0.02%. With three-layer geometries, the axial registration error gets worse with a bias magnitude up to 2.1% but is otherwise relatively stable over depth. The stability over depth of the bias in a given medium still allows for accurate sound speed estimates with a mean relative error less than 0.2%
Data adaptive estimation of transversal blood flow velocities
The examination of blood flow inside the body may yield important information about vascular anomalies, such as possible indications of, for example, stenosis. Current medical ultrasound systems suffer from only allowing for measuring the blood flow velocity along the direction of irradiation, posing natural difficulties due to the complex behaviour of blood flow, and due to the natural orientation of most blood vessels. Recently, a transversal modulation scheme was introduced to induce also an oscillation along the transversal direction, thereby allowing for the measurement of also the transversal blood flow. In this paper, we propose a novel data-adaptive blood flow estimator exploiting this modulation scheme. Using realistic Field II simulations, the proposed estimator is shown to achieve a notable performance improvement as compared to current state-of-the-art techniques
Determination of the Far-Infrared Cosmic Background Using COBE/DIRBE and WHAM Data
Determination of the cosmic infrared background (CIB) at far infrared
wavelengths using COBE/DIRBE data is limited by the accuracy to which
foreground interplanetary and Galactic dust emission can be modeled and
subtracted. Previous determinations of the far infrared CIB (e.g., Hauser et
al. 1998) were based on the detection of residual isotropic emission in skymaps
from which the emission from interplanetary dust and the neutral interstellar
medium were removed. In this paper we use the Wisconsin H-alpha Mapper (WHAM)
Northern Sky Survey as a tracer of the ionized medium to examine the effect of
this foreground component on determination of the CIB. We decompose the DIRBE
far infrared data for five high Galactic latitude regions into H I and H-alpha
correlated components and a residual component. We find the H-alpha correlated
component to be consistent with zero for each region, and we find that addition
of an H-alpha correlated component in modeling the foreground emission has
negligible effect on derived CIB results. Our CIB detections and 2 sigma upper
limits are essentially the same as those derived by Hauser et al. and are given
by nu I_nu (nW m-2 sr-1) < 75, < 32, 25 +- 8, and 13 +- 3 at 60, 100, 140, and
240 microns, respectively. Our residuals have not been subjected to a detailed
anisotropy test, so our CIB results do not supersede those of Hauser et al. We
derive upper limits on the 100 micron emissivity of the ionized medium that are
typically about 40% of the 100 micron emissivity of the neutral atomic medium.
This low value may be caused in part by a lower dust-to-gas mass ratio in the
ionized medium than in the neutral medium, and in part by a shortcoming of
using H-alpha intensity as a tracer of far infrared emission.Comment: 38 pages, 8 figures. Accepted for publication in Ap
- …
