125 research outputs found

    Electromagnetic Treatment to Old Alzheimer's Mice Reverses β-Amyloid Deposition, Modifies Cerebral Blood Flow, and Provides Selected Cognitive Benefit

    Get PDF
    Few studies have investigated physiologic and cognitive effects of “long-term" electromagnetic field (EMF) exposure in humans or animals. Our recent studies have provided initial insight into the long-term impact of adulthood EMF exposure (GSM, pulsed/modulated, 918 MHz, 0.25–1.05 W/kg) by showing 6+ months of daily EMF treatment protects against or reverses cognitive impairment in Alzheimer's transgenic (Tg) mice, while even having cognitive benefit to normal mice. Mechanistically, EMF-induced cognitive benefits involve suppression of brain β-amyloid (Aβ) aggregation/deposition in Tg mice and brain mitochondrial enhancement in both Tg and normal mice. The present study extends this work by showing that daily EMF treatment given to very old (21–27 month) Tg mice over a 2-month period reverses their very advanced brain Aβ aggregation/deposition. These very old Tg mice and their normal littermates together showed an increase in general memory function in the Y-maze task, although not in more complex tasks. Measurement of both body and brain temperature at intervals during the 2-month EMF treatment, as well as in a separate group of Tg mice during a 12-day treatment period, revealed no appreciable increases in brain temperature (and no/slight increases in body temperature) during EMF “ON" periods. Thus, the neuropathologic/cognitive benefits of EMF treatment occur without brain hyperthermia. Finally, regional cerebral blood flow in cerebral cortex was determined to be reduced in both Tg and normal mice after 2 months of EMF treatment, most probably through cerebrovascular constriction induced by freed/disaggregated Aβ (Tg mice) and slight body hyperthermia during “ON" periods. These results demonstrate that long-term EMF treatment can provide general cognitive benefit to very old Alzheimer's Tg mice and normal mice, as well as reversal of advanced Aβ neuropathology in Tg mice without brain heating. Results further underscore the potential for EMF treatment against AD

    Effects of Aβ exposure on longterm associative memory and its neuronal mechanisms in a defined neuronal network

    Get PDF
    Amyloid beta (Aβ ) induced neuronal death has been linked to memory loss, perhaps the most devastating symptom of Alzheimer’s disease (AD). Although Aβ -induced impairment of synaptic or intrinsic plasticity is known to occur before any cell death, the links between these neurophysiological changes and the loss of specific types of behavioral memory are not fully understood. Here we used a behaviorally and physiologically tractable animal model to investigate Aβ -induced memory loss and electrophysiological changes in the absence of neuronal death in a defined network underlying associative memory. We found similar behavioral but different neurophysiological effects for Aβ 25-35 and Aβ 1-42 in the feeding circuitry of the snail Lymnaea stagnalis. Importantly, we also established that both the behavioral and neuronal effects were dependent upon the animals having been classically conditioned prior to treatment, since Aβ application before training caused neither memory impairment nor underlying neuronal changes over a comparable period of time following treatment

    Absence of Ca2+-stimulated adenylyl cyclases leads to reduced synaptic plasticity and impaired experience-dependent fear memory

    Get PDF
    Ca2+-stimulated adenylyl cyclase (AC) 1 and 8 are two genes that have been shown to play critical roles in fear memory. AC1 and AC8 couple neuronal activity and intracellular Ca2+ increases to the production of cyclic adenosine monophosphate and are localized synaptically, suggesting that Ca2+-stimulated ACs may modulate synaptic plasticity. Here, we first established that Ca2+-stimulated ACs modulate protein markers of synaptic activity at baseline and after learning. Primary hippocampal cell cultures showed that AC1/AC8 double-knockout (DKO) mice have reduced SV2, a synaptic vesicle protein, abundance along their dendritic processes, and this reduction can be rescued through lentivirus delivery of AC8 to the DKO cells. Additionally, phospho-synapsin, a protein implicated in the regulation of neurotransmitter release at the synapse, is decreased in vivo 1 h after conditioned fear (CF) training in DKO mice. Importantly, additional experiments showed that long-term potentiation deficits present in DKO mice are rescued by acutely replacing AC8 in the forebrain, further supporting the idea that Ca2+-stimulated AC activity is a crucial modulator of synaptic plasticity. Previous studies have demonstrated that memory is continually modulated by gene–environment interactions. The last set of experiments evaluated the effects of knocking out AC1 and AC8 genes on experience-dependent changes in CF memory. We showed that the strength of CF memory in wild-type mice is determined by previous environment, minimal or enriched, whereas memory in DKO mice is unaffected. Thus, overall these results show that AC1 and AC8 modulate markers of synaptic activity and help integrate environmental information to modulate fear memory

    The Effect of Chronic Antipsychotic Drug on Hypothalamic Expression of Neural Nitric Oxide Synthase and Dopamine D2 Receptor in the Male Rat

    Get PDF
    Antipsychotic-induced sexual dysfunction is a common and serious clinical side effect. It has been demonstrated that both neuronal nitric oxide (nNOS) and dopamine D2 receptor (DRD2) in the medial preoptic area (MPOA) and the paraventricular nucleus (PVN) of the hypothalamus have important roles in the regulation of sexual behaviour. We investigated the influences of 21 days’ antipsychotic drug administration on expression of nNOS and DRD2 in the rat hypothalamus. Haloperidol (0.5 mg/kg/day i.p.) significantly decreased nNOS integrated optical density in a sub-nucleus of the MPOA, medial preoptic nucleus (MPN), and decreased the nNOS integrated optical density and cell density in another sub-nucleus of the MPOA, anterodorsal preoptic nucleus (ADP). Risperidone (0.25 mg/kg) inhibited the nNOS integrated optical density in the ADP. nNOS mRNA and protein in the MPOA but not the PVN was also significantly decreased by haloperidol. Haloperidol and risperidone increased DRD2 mRNA and protein expression in both the MPOA and the PVN. Quetiapine (20 mg/kg/day i.p.) did not influence the expression of nNOS and DRD2 in either the MPOA or the PVN. These findings indicate that hypothalamic nNOS and DRD2 are affected to different extents by chronic administration of risperidone and haloperidol, but are unaffected by quetiapine. These central effects might play a role in sexual dysfunction induced by certain antipsychotic drugs

    DHA Supplemented in Peptamen Diet Offers No Advantage in Pathways to Amyloidosis: Is It Time to Evaluate Composite Lipid Diet?

    Get PDF
    Numerous reports have documented the beneficial effects of dietary docosahexaenoic acid (DHA) on beta-amyloid production and Alzheimer's disease (AD). However, none of these studies have examined and compared DHA, in combination with other dietary nutrients, for its effects on plaque pathogenesis. Potential interactions of DHA with other dietary nutrients and fatty acids are conventionally ignored. Here we investigated DHA with two dietary regimes; peptamen (pep+DHA) and low fat diet (low fat+DHA). Peptamen base liquid diet is a standard sole-source nutrition for patients with gastrointestinal dysfunction. Here we demonstrate that a robust AD transgenic mouse model shows an increased tendency to produce beta-amyloid peptides and amyloid plaques when fed a pep+DHA diet. The increase in beta-amyloid peptides was due to an elevated trend in the levels of beta-secretase amyloid precursor protein (APP) cleaving enzyme (BACE), the proteolytic C-terminal fragment beta of APP and reduced levels of insulin degrading enzyme that endoproteolyse beta-amyloid. On the contrary, TgCRND8 mice on low fat+DHA diet (based on an approximately 18% reduction of fat intake) ameliorate the production of abeta peptides and consequently amyloid plaques. Our work not only demonstrates that DHA when taken with peptamen may have a tendency to confer a detrimental affect on the amyloid plaque build up but also reinforces the importance of studying composite lipids or nutrients rather than single lipids or nutrients for their effects on pathways important to plaque development

    Caffeine Consumption Prevents Diabetes-Induced Memory Impairment and Synaptotoxicity in the Hippocampus of NONcZNO10/LTJ Mice

    Get PDF
    Diabetic conditions are associated with modified brain function, namely with cognitive deficits, through largely undetermined processes. More than understanding the underlying mechanism, it is important to devise novel strategies to alleviate diabetes-induced cognitive deficits. Caffeine (a mixed antagonist of adenosine A1 and A2A receptors) emerges as a promising candidate since caffeine consumption reduces the risk of diabetes and effectively prevents memory deficits caused by different noxious stimuli. Thus, we took advantage of a novel animal model of type 2 diabetes to investigate the behavioural, neurochemical and morphological modifications present in the hippocampus and tested if caffeine consumption might prevent these changes. We used a model closely mimicking the human type 2 diabetes condition, NONcNZO10/LtJ mice, which become diabetic at 7–11 months when kept under an 11% fat diet. Caffeine (1 g/l) was applied in the drinking water from 7 months onwards. Diabetic mice displayed a decreased spontaneous alternation in the Y-maze accompanied by a decreased density of nerve terminal markers (synaptophysin, SNAP25), mainly glutamatergic (vesicular glutamate transporters), and increased astrogliosis (GFAP immunoreactivity) compared to their wild type littermates kept under the same diet. Furthermore, diabetic mice displayed up-regulated A2A receptors and down-regulated A1 receptors in the hippocampus. Caffeine consumption restored memory performance and abrogated the diabetes-induced loss of nerve terminals and astrogliosis. These results provide the first evidence that type 2 diabetic mice display a loss of nerve terminal markers and astrogliosis, which is associated with memory impairment; furthermore, caffeine consumption prevents synaptic dysfunction and astrogliosis as well as memory impairment in type 2 diabetes

    Static Magnetic Field Exposure Reproduces Cellular Effects of the Parkinson's Disease Drug Candidate ZM241385

    Get PDF
    This study was inspired by coalescing evidence that magnetic therapy may be a viable treatment option for certain diseases. This premise is based on the ability of moderate strength fields (i.e., 0.1 to 1 Tesla) to alter the biophysical properties of lipid bilayers and in turn modulate cellular signaling pathways. In particular, previous results from our laboratory (Wang et al., BMC Genomics, 10, 356 (2009)) established that moderate strength static magnetic field (SMF) exposure altered cellular endpoints associated with neuronal function and differentiation. Building on this background, the current paper investigated SMF by focusing on the adenosine A(2A) receptor (A(2A)R) in the PC12 rat adrenal pheochromocytoma cell line that displays metabolic features of Parkinson's disease (PD).SMF reproduced several responses elicited by ZM241385, a selective A(2A)R antagonist, in PC12 cells including altered calcium flux, increased ATP levels, reduced cAMP levels, reduced nitric oxide production, reduced p44/42 MAPK phosphorylation, inhibited proliferation, and reduced iron uptake. SMF also counteracted several PD-relevant endpoints exacerbated by A(2A)R agonist CGS21680 in a manner similar to ZM241385; these include reduction of increased expression of A(2A)R, reversal of altered calcium efflux, dampening of increased adenosine production, reduction of enhanced proliferation and associated p44/42 MAPK phosphorylation, and inhibition of neurite outgrowth.When measured against multiple endpoints, SMF elicited qualitatively similar responses as ZM241385, a PD drug candidate. Provided that the in vitro results presented in this paper apply in vivo, SMF holds promise as an intriguing non-invasive approach to treat PD and potentially other neurological disorders

    Neurodegeneration of the retina in mouse models of Alzheimer’s disease: what can we learn from the retina?

    Get PDF
    Alzheimer’s disease (AD) is an age-related progressive neurodegenerative disease commonly found among elderly. In addition to cognitive and behavioral deficits, vision abnormalities are prevalent in AD patients. Recent studies investigating retinal changes in AD double-transgenic mice have shown altered processing of amyloid precursor protein and accumulation of β-amyloid peptides in neurons of retinal ganglion cell layer (RGCL) and inner nuclear layer (INL). Apoptotic cells were also detected in the RGCL. Thus, the pathophysiological changes of retinas in AD patients are possibly resembled by AD transgenic models. The retina is a simple model of the brain in the sense that some pathological changes and therapeutic strategies from the retina may be observed or applicable to the brain. Furthermore, it is also possible to advance our understanding of pathological mechanisms in other retinal degenerative diseases. Therefore, studying AD-related retinal degeneration is a promising way for the investigation on (1) AD pathologies and therapies that would eventually benefit the brain and (2) cellular mechanisms in other retinal degenerations such as glaucoma and age-related macular degeneration. This review will highlight the efforts on retinal degenerative research using AD transgenic mouse models

    Mechanisms and therapeutic applications of electromagnetic therapy in Parkinson's disease

    Get PDF
    © 2015 Vadalà et al. Electromagnetic therapy is a non-invasive and safe approach for the management of several pathological conditions including neurodegenerative diseases. Parkinson's disease is a neurodegenerative pathology caused by abnormal degeneration of dopaminergic neurons in the ventral tegmental area and substantia nigra pars compacta in the midbrain resulting in damage to the basal ganglia. Electromagnetic therapy has been extensively used in the clinical setting in the form of transcranial magnetic stimulation, repetitive transcranial magnetic stimulation, high-frequency transcranial magnetic stimulation and pulsed electromagnetic field therapy which can also be used in the domestic setting. In this review, we discuss the mechanisms and therapeutic applications of electromagnetic therapy to alleviate motor and non-motor deficits that characterize Parkinson's disease

    Alzheimer disease models and human neuropathology: similarities and differences

    Get PDF
    Animal models aim to replicate the symptoms, the lesions or the cause(s) of Alzheimer disease. Numerous mouse transgenic lines have now succeeded in partially reproducing its lesions: the extracellular deposits of Aβ peptide and the intracellular accumulation of tau protein. Mutated human APP transgenes result in the deposition of Aβ peptide, similar but not identical to the Aβ peptide of human senile plaque. Amyloid angiopathy is common. Besides the deposition of Aβ, axon dystrophy and alteration of dendrites have been observed. All of the mutations cause an increase in Aβ 42 levels, except for the Arctic mutation, which alters the Aβ sequence itself. Overexpressing wild-type APP alone (as in the murine models of human trisomy 21) causes no Aβ deposition in most mouse lines. Doubly (APP × mutated PS1) transgenic mice develop the lesions earlier. Transgenic mice in which BACE1 has been knocked out or overexpressed have been produced, as well as lines with altered expression of neprilysin, the main degrading enzyme of Aβ. The APP transgenic mice have raised new questions concerning the mechanisms of neuronal loss, the accumulation of Aβ in the cell body of the neurons, inflammation and gliosis, and the dendritic alterations. They have allowed some insight to be gained into the kinetics of the changes. The connection between the symptoms, the lesions and the increase in Aβ oligomers has been found to be difficult to unravel. Neurofibrillary tangles are only found in mouse lines that overexpress mutated tau or human tau on a murine tau −/− background. A triply transgenic model (mutated APP, PS1 and tau) recapitulates the alterations seen in AD but its physiological relevance may be discussed. A number of modulators of Aβ or of tau accumulation have been tested. A transgenic model may be analyzed at three levels at least (symptoms, lesions, cause of the disease), and a reading key is proposed to summarize this analysis
    • …
    corecore