18 research outputs found
Advanced fabrication techniques for hydrogen-cooled engine structures
Described is a program for development of coolant passage geometries, material systems, and joining processes that will produce long-life hydrogen-cooled structures for scramjet applications. Tests were performed to establish basic material properties, and samples constructed and evaluated to substantiate fabrication processes and inspection techniques. Results of the study show that the basic goal of increasing the life of hydrogen-cooled structures two orders of magnitude relative to that of the Hypersonic Research Engine can be reached with available means. Estimated life is 19000 cycles for the channels and 16000 cycles for pin-fin coolant passage configurations using Nickel 201. Additional research is required to establish the fatigue characteristics of dissimilar-metal coolant passages (Nickel 201/Inconel 718) and to investigate the embrittling effects of the hydrogen coolant
MAPK and JAK/STAT pathways targeted by miR-23a and miR-23b in prostate cancer: computational and in vitro approaches
The long-lasting inadequacy of existing treatments for prostate cancer has led to increasing efforts for developing novel therapies for this disease. MicroRNAs (miRNAs) are believed to have considerable therapeutic potential due to their role in regulating gene expression and cellular pathways. Identifying miRNAs that efficiently target genes and pathways is a key step in using these molecules for therapeutic purposes. Moreover, computational methods have been devised to help identify candidate miRNAs for each gene/pathway. MAPK and JAK/STAT pathways are known to have essential roles in cell proliferation and neoplastic transformation in different cancers including prostate cancer. Herein, we tried to identify miRNAs that target these pathways in the context of prostate cancer as therapeutic molecules. Genes involved in these pathways were analyzed with various algorithms to identify potentially targeting miRNAs. miR-23a and miR-23b were then selected as the best potential candidates that target a higher number of genes in these pathways with greater predictive scores. We then analyzed the expression of candidate miRNAs in LNCAP and PC3 cell lines as well as prostate cancer clinical samples. miR-23a and miR-23b showed a significant downregulation in cell line and tissue samples, a finding which is consistent with overactivation of these pathways in prostate cancer. In addition, we overexpressed miR-23a and miR-23b in LNCAP and PC3 cell lines, and these two miRNAs decreased IL-6R expression which has a critical role in these pathways. These results suggest the probability of utilizing miR-23a and miR-23b as therapeutic targets for the treatment of prostate cancer. © 2015, International Society of Oncology and BioMarkers (ISOBM)
Integrating organisation of healthcare services, workers' wellbeing, and quality of care:An introduction to the system-based perspective of healthy healthcare
The current chapter introduces Healthy Healthcare, an integrated perspective involving quality of care, workers' wellbeing, and organisation of healthcare services, for a system-based understanding of healthcare practice. Healthy Healthcare is based on three main conditions, herein termed pillars, of healthcare delivery: (a) quality of care; (b) workers' wellbeing; and (c) organisation of healthcare. This perspective is important to develop research approaches and to incorporate evidence-based practice and knowledge into Healthy Healthcare. The current volume provides perspectives on Healthy Healthcare based on research from different disciplines and different countries. This chapter introduces Healthy Healthcare with a brief presentation of the modern context of healthcare practice and a description and explanation of the system. It concludes with a brief outline of the volume's contents.</p