64 research outputs found

    Fatty Acid Methyl Esters as Biosolvents of Epoxy Resins: A Physicochemical Study

    Get PDF
    The C8 to C18 fatty acid methyl esters (FAME) have been compared as solvents for two epoxy resin pre-polymers, bisphenol A diglycidyl ether (DGEBA) and triglycidyl paminophenol ether (TGPA). It was found that the solubilization limits vary according to the ester and that methyl caprylate is the best solvent of both resins. To explain these solubility performances, physical and chemical properties of FAME were studied, such as the Hansen parameters, viscosity, binary diffusion coefficient and vaporization enthalpy. Determination of the physicochemical parameters of FAME was carried out by laboratory experimentations and by calculation from bibliographic data. The Hansen parameters of FAME and epoxy resins pre-polymers were theoretically and experimentally determined. The FAME chain length showed a long dependence on the binary diffusion parameters and kinematic viscosity, which are mass and momentum transport properties. Moreover, the vaporization enthalpy of these compounds was directly correlated with the solubilization limits

    Mouse Chromosome 11

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46996/1/335_2004_Article_BF00648429.pd

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Performance Evaluation of a Passive Millimeter-Wave Imager

    No full text

    Forest-Water Interactions Under Global Change

    No full text
    This chapter reviews how global change affects forest-water interactions and water availability to ecosystems and people and synthesises current understanding of the implications of present and anticipated changes to forests and tree cover for local and global hydrology. Forest cover has declined in the past half-century, despite an increase in plantation forestry. Natural and human disturbances affect forest components (e.g. canopy and leaf area, litter and soil surface, rooting depth, and soil porosity) that in turn affect hydrological processes (e.g. interception, evapotranspiration, infiltration, soil moisture storage, and percolation). Many of these changes result from several influential natural disturbance processes including insects and pathogens, wildfire, ice storms, and windthrow, and human disturbances including establishment and harvest of forests, plantations, agroforestry areas, and urban/peri-urban forests. However, each disturbance process affects different components of the forest, producing distinctive hydrologic effects. Climate change will directly alter forest hydrological processes, and social and economic factors will directly alter forest management, via intensive plantations, deforestation, forest degradation, selective logging, loss of riparian forest, and loss of urban trees, and changes in disturbance regimes. Despite extensive knowledge of forest hydrology, forest changes and their effects on hydrology are poorly documented in many areas of the world, and novel combinations of processes and contexts may produce surprising outcomes. Thus, there is a clear need for more geographically extensive and long-term place-based studies of forest and water. In summary, future climate and social changes will alter forests and water, requiring continued research and collaboration with forest managers and forest owners both for improved resilience to such changes, and to better realize multiple benefits
    corecore