358 research outputs found

    MECHANISMS OF DISEASE Acute Oxygen-Sensing Mechanisms

    Get PDF
    JOSEPH PRIESTLEY, ONE OF THE THREE SCIENTISTS CREDITED WITH THE discovery of oxygen, described the death of mice that were deprived of oxygen. However, he was also well aware of the toxicity of too much oxygen, stating, “For as a candle burns much faster in dephlogisticated [oxygen enriched] than in common air, so we might live out too fast, and the animal powers be too soon exhausted in this pure kind of air. A moralist, at least, may say, that the air which nature has provided for us is as good as we deserve.”1 In this review we examine the remarkable mechanisms by which different organs detect and respond to acute changes in oxygen tension. Specialized tissues that sense the local oxygen tension include glomus cells of the carotid body, neuroepithelial bodies in the lungs, chromaffin cells of the fetal adrenal medulla, and smooth-muscle cells of the resistance pulmonary arteries, fetoplacental arteries, systemic arteries, and the ductus arteriosus. Together, they constitute a specialized homeostatic oxygen-sensing system. Although all tissues are sensitive to severe hypoxia, these specialized tissues respond rapidly to moderate changes in oxygen tension within the physiologic range (roughly 40 to 100 mm Hg in an adult and 20 to 40 mm Hg in a fetus)Junta de Andalucí

    Colchicine depolymerizes microtubules, increases junctophilin-2, and improves right ventricular function in experimental pulmonary arterial hypertension

    Get PDF
    Background Pulmonary arterial hypertension (PAH) is a lethal disease characterized by obstructive pulmonary vascular remodeling and right ventricular (RV) dysfunction. Although RV function predicts outcomes in PAH, mechanisms of RV dysfunction are poorly understood, and RV‐targeted therapies are lacking. We hypothesized that in PAH, abnormal microtubular structure in RV cardiomyocytes impairs RV function by reducing junctophilin‐2 (JPH2) expression, resulting in t‐tubule derangements. Conversely, we assessed whether colchicine, a microtubule‐depolymerizing agent, could increase JPH2 expression and enhance RV function in monocrotaline‐induced PAH. Methods and Results Immunoblots, confocal microscopy, echocardiography, cardiac catheterization, and treadmill testing were used to examine colchicine's (0.5 mg/kg 3 times/week) effects on pulmonary hemodynamics, RV function, and functional capacity. Rats were treated with saline (n=28) or colchicine (n=24) for 3 weeks, beginning 1 week after monocrotaline (60 mg/kg, subcutaneous). In the monocrotaline RV, but not the left ventricle, microtubule density is increased, and JPH2 expression is reduced, with loss of t‐tubule localization and t‐tubule disarray. Colchicine reduces microtubule density, increases JPH2 expression, and improves t‐tubule morphology in RV cardiomyocytes. Colchicine therapy diminishes RV hypertrophy, improves RV function, and enhances RV–pulmonary artery coupling. Colchicine reduces small pulmonary arteriolar thickness and improves pulmonary hemodynamics. Finally, colchicine increases exercise capacity. Conclusions Monocrotaline‐induced PAH causes RV‐specific derangement of microtubules marked by reduction in JPH2 and t‐tubule disarray. Colchicine reduces microtubule density, increases JPH2 expression, and improves both t‐tubule architecture and RV function. Colchicine also reduces adverse pulmonary vascular remodeling. These results provide biological plausibility for a clinical trial to repurpose colchicine as a RV‐directed therapy for PAH

    Increased Drp1-mediated mitochondrial fission promotes proliferation and collagen production by right ventricular fibroblasts in experimental pulmonary arterial hypertension

    Get PDF
    Introduction: Right ventricular (RV) fibrosis contributes to RV failure in pulmonary arterial hypertension (PAH). The mechanisms underlying RV fibrosis in PAH and the role of RV fibroblasts (RVfib) are unknown. Activation of the mitochondrial fission mediator dynamin-related protein 1 (Drp1) contributes to dysfunction of RV myocytes in PAH through interaction with its binding partner, fission protein 1 (Fis1). However, the role of mitochondrial fission in RVfib and RV fibrosis in PAH is unknown. Objective: We hypothesize that mitochondrial fission is increased in RVfib of rats with monocrotaline (MCT)-induced PAH. We evaluated the contribution of Drp1 and Drp1–Fis1 interaction to RVfib proliferation and collagen production in culture and to RV fibrosis in vivo. Methods: Vimentin (+) RVfib were enzymatically isolated and cultured from the RVs of male Sprague–Dawley rats that received MCT (60 mg/kg) or saline. Mitochondrial morphology, proliferation, collagen production, and expression of Drp1, Drp1 binding partners and mitochondrial fusion mediators were measured. The Drp1 inhibitor mitochondrial division inhibitor 1 (Mdivi-1), P110, a competitive peptide inhibitor of Drp1–Fis1 interaction, and siRNA targeting Drp1 were assessed. Subsequently, prevention and regression studies tested the antifibrotic effects of P110 (0.5 mg/kg) in vivo. At week 4 post MCT, echocardiography and right heart catheterization were performed. The RV was stained for collagen. Results: Mitochondrial fragmentation, proliferation rates and collagen production were increased in MCT-RVfib versus control-RVfib. MCT-RVfib had increased expression of activated Drp1 protein and a trend to decreased mitofusin-2 expression. Mdivi-1 and P110 inhibited mitochondrial fission, proliferation and collagen III expression in MCT-RVfib. However, P110 was only effective at high doses (1 mM). siDrp1 also reduced fission in MCT-RVfib. Despite promising results in cell therapy, in vivo therapy with P110 failed to prevent or regress RV fibrosis in MCT rats, perhaps due to failure to achieve adequate P110 levels or to the greater importance of interaction of Drp1 with other binding partners. Conclusion: PAH RVfib have increased Drp1-mediated mitochondrial fission. Inhibiting Drp1 prevents mitochondrial fission and reduces RVfib proliferation and collagen production. This is the first description of disordered mitochondrial dynamics in RVfib and suggests that Drp1 is a potential new antifibrotic target

    SIRT3 Deacetylates and Activates OPA1 To Regulate Mitochondrial Dynamics during Stress

    Get PDF
    Mitochondrial morphology is regulated by the balance between two counteracting mitochondrial processes of fusion and fission. There is significant evidence suggesting a stringent association between morphology and bioenergetics of mitochondria. Morphological alterations in mitochondria are linked to several pathological disorders, including cardiovascular diseases. The consequences of stress-induced acetylation of mitochondrial proteins on the organelle morphology remain largely unexplored. Here we report that OPA1, a mitochondrial fusion protein, was hyperacetylated in hearts under pathological stress and this posttranslational modification reduced the GTPase activity of the protein. The mitochondrial deacetylase SIRT3 was capable of deacetylating OPA1 and elevating its GTPase activity. Mass spectrometry and mutagenesis analyses indicated that in SIRT3-deficient cells OPA1 was acetylated at lysine 926 and 931 residues. Overexpression of a deacetylation-mimetic version of OPA1 recovered the mitochondrial functions of OPA1-null cells, thus demonstrating the functional significance of K926/931 acetylation in regulating OPA1 activity. Moreover, SIRT3-dependent activation of OPA1 contributed to the preservation of mitochondrial networking and protection of cardiomyocytes from doxorubicin-mediated cell death. In summary, these data indicated that SIRT3 promotes mitochondrial function not only by regulating activity of metabolic enzymes, as previously reported, but also by regulating mitochondrial dynamics by targeting OPA1

    Late gadolinium enhancement cardiovascular magnetic resonance predicts clinical worsening in patients with pulmonary hypertension

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Late gadolinium enhancement (LGE) occurs at the right ventricular (RV) insertion point (RVIP) in patients with pulmonary hypertension (PH) and has been shown to correlate with cardiovascular magnetic resonance (CMR) derived RV indices. However, the prognostic role of RVIP-LGE and other CMR-derived parameters of RV function are not well established. Our aim was to evaluate the predictive value of contrast-enhanced CMR in patients with PH.</p> <p>Methods</p> <p>RV size, ejection fraction (RVEF), and the presence of RVIP-LGE were determined in 58 patients with PH referred for CMR. All patients underwent right heart catheterization, exercise testing, and N-terminal pro-brain natriuretic peptide (NT-proBNP) evaluation; results of which were included in the final analysis if performed within 4 months of the CMR study. Patients were followed for the primary endpoint of time to clinical worsening (death, decompensated right ventricular heart failure, initiation of prostacyclin, or lung transplantation).</p> <p>Results</p> <p>Overall, 40/58 (69%) of patients had RVIP-LGE. Patients with RVIP- LGE had larger right ventricular volume index, lower RVEF, and higher mean pulmonary artery pressure (mPAP), all p < 0.05. During the follow-up period of 10.2 ± 6.3 months, 19 patients reached the primary endpoint. In a univariate analysis, RVIP-LGE was a predictor for adverse outcomes (p = 0.026). In a multivariate analysis, CMR-derived RVEF was an independent predictor of clinical worsening (p = 0.036) along with well-established prognostic parameters such as exercise capacity (p = 0.010) and mPAP (p = 0.001).</p> <p>Conclusions</p> <p>The presence of RVIP-LGE in patients with PH is a marker for more advanced disease and poor prognosis. In addition, this study reveals for the first time that CMR-derived RVEF is an independent non-invasive imaging predictor of adverse outcomes in this patient population.</p

    Biventricular Increases in Mitochondrial Fission Mediator (MiD51) and Proglycolytic Pyruvate Kinase (PKM2) Isoform in Experimental Group 2 Pulmonary Hypertension-Novel Mitochondrial Abnormalities

    Get PDF
    Introduction: Group 2 pulmonary hypertension (PH), defined as a mean pulmonary arterial pressure ≄25 mmHg with elevated pulmonary capillary wedge pressure &gt;15 mmHg, has no approved therapy and patients often die from right ventricular failure (RVF). Alterations in mitochondrial metabolism, notably impaired glucose oxidation, and increased mitochondrial fission, contribute to right ventricle (RV) dysfunction in PH. We hypothesized that the impairment of RV and left ventricular (LV) function in group 2 PH results in part from a proglycolytic isoform switch from pyruvate kinase muscle (PKM) isoform 1 to 2 and from increased mitochondrial fission, due either to upregulation of expression of dynamin-related protein 1 (Drp1) or its binding partners, mitochondrial dynamics protein of 49 or 51 kDa (MiD49 or 51).Methods and Results: Group 2 PH was induced by supra-coronary aortic banding (SAB) in 5-week old male Sprague Dawley rats. Four weeks post SAB, echocardiography showed marked reduction of tricuspid annular plane systolic excursion (2.9 ± 0.1 vs. 4.0 ± 0.1 mm) and pulmonary artery acceleration time (24.3 ± 0.9 vs. 35.4 ± 1.8 ms) in SAB vs. sham rats. Nine weeks post SAB, left and right heart catheterization showed significant biventricular increases in end systolic and diastolic pressure in SAB vs. sham rats (LV: 226 ± 15 vs. 103 ± 5 mmHg, 34 ± 5 vs. 7 ± 1 mmHg; RV: 40 ± 4 vs. 22 ± 1 mmHg, and 4.7 ± 1.5 vs. 0.9 ± 0.5 mmHg, respectively). Picrosirius red staining showed marked biventricular fibrosis in SAB rats. There was increased muscularization of small pulmonary arteries in SAB rats. Confocal microscopy showed biventricular mitochondrial depolarization and fragmentation in SAB vs. sham cardiomyocytes. Transmission electron microscopy confirmed a marked biventricular reduction in mitochondria size in SAB hearts. Immunoblot showed marked biventricular increase in PKM2/PKM1 and MiD51 expression. Mitofusin 2 and mitochondrial pyruvate carrier 1 were increased in SAB LVs.Conclusions: SAB caused group 2 PH. Impaired RV function and RV fibrosis were associated with increases in mitochondrial fission and expression of MiD51 and PKM2. While these changes would be expected to promote increased production of reactive oxygen species and a glycolytic shift in metabolism, further study is required to determine the functional consequences of these newly described mitochondrial abnormalities

    Ischemia-induced Drp1 and Fis1-mediated mitochondrial fission and right ventricular dysfunction in pulmonary hypertension

    Get PDF
    Right ventricular (RV) function determines prognosis in pulmonary arterial hypertension (PAH). We hypothesize that ischemia causes RV dysfunction in PAH by triggering dynamin-related protein 1 (Drp1)-mediated mitochondrial fission. RV function was compared in control rats (n = 50) versus rats with monocrotaline-induced PAH (MCT-PAH; n = 60) both in vivo (echocardiography) and ex vivo (RV Langendorff). Mitochondrial membrane potential and morphology and RV function were assessed before or after 2 cycles of ischemia-reperfusion injury challenge (RV-IR). The effects of Mdivi-1 (25 ÎŒM), a Drp1 GTPase inhibitor, and P110 (1 ÎŒM), a peptide inhibitor of Drp1-Fis1 interaction, were studied. We found that MCT caused RV hypertrophy, RV vascular rarefaction, and RV dysfunction. Prior to IR, the mitochondria in MCT-PAH RV were depolarized and swollen with increased Drp1 content and reduced aconitase activity. RV-IR increased RV end diastolic pressure (RVEDP) and mitochondrial Drp1 expression in both control and MCT-PAH RVs. IR depolarized mitochondria in control RV but did not exacerbate the basally depolarized MCT-PAH RV mitochondria. During RV IR mdivi-1 and P110 reduced Drp1 translocation to mitochondria, improved mitochondrial structure and function, and reduced RVEDP. In conclusion, RV ischemia occurs in PAH and causes Drp1-Fis1-mediated fission leading to diastolic dysfunction. Inhibition of mitochondrial fission preserves RV function in RV-IR

    MicroRNA-138 and microRNA-25 down-regulate mitochondrial calcium uniporter, causing the pulmonary arterial hypertension cancer phenotype

    Get PDF
    Rationale: Pulmonary arterial hypertension (PAH) is an obstructive vasculopathy characterized by excessive pulmonary artery smooth muscle cell (PASMC) proliferation, migration, and apoptosis resistance. This cancer-like phenotype is promoted by increased cytosolic calcium ([Ca2+]cyto), aerobic glycolysis, and mitochondrial fission. Objectives: To determine how changes in mitochondrial calcium uniporter (MCU) complex (MCUC) function influence mitochondrial dynamics and contribute to PAH’s cancer-like phenotype. Methods: PASMCs were isolated from patients with PAH and healthy control subjects and assessed for expression of MCUC subunits. Manipulation of the pore-forming subunit, MCU, in PASMCs was achieved through small interfering RNA knockdown or MCU plasmid-mediated up-regulation, as well as through modulation of the upstream microRNAs (miRs) miR-138 and miR-25. In vivo, nebulized anti-miRs were administered to rats with monocrotaline-induced PAH. Measurements and Main Results: Impaired MCUC function, resulting from down-regulation of MCU and up-regulation of an inhibitory subunit, mitochondrial calcium uptake protein 1, is central to PAH’s pathogenesis. MCUC dysfunction decreases intramitochondrial calcium ([Ca2+]mito), inhibiting pyruvate dehydrogenase activity and glucose oxidation, while increasing [Ca2+]cyto, promoting proliferation, migration, and fission. In PAH PASMCs, increasing MCU decreases cell migration, proliferation, and apoptosis resistance by lowering [Ca2+]cyto, raising [Ca2+]mito, and inhibiting fission. In normal PASMCs, MCUC inhibition recapitulates the PAH phenotype. In PAH, elevated miRs (notably miR-138) down-regulate MCU directly and also by decreasing MCU’s transcriptional regulator cAMP response element–binding protein 1. Nebulized anti-miRs against miR-25 and miR-138 restore MCU expression, reduce cell proliferation, and regress established PAH in the monocrotaline model. Conclusions: These results highlight miR-mediated MCUC dysfunction as a unifying mechanism in PAH that can be therapeutically targeted
    • 

    corecore