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Introduction: Group 2 pulmonary hypertension (PH), defined as a mean pulmonary

arterial pressure ≥25 mmHg with elevated pulmonary capillary wedge pressure >15

mmHg, has no approved therapy and patients often die from right ventricular failure

(RVF). Alterations in mitochondrial metabolism, notably impaired glucose oxidation, and

increased mitochondrial fission, contribute to right ventricle (RV) dysfunction in PH. We

hypothesized that the impairment of RV and left ventricular (LV) function in group 2 PH

results in part from a proglycolytic isoform switch from pyruvate kinase muscle (PKM)

isoform 1 to 2 and from increased mitochondrial fission, due either to upregulation of

expression of dynamin-related protein 1 (Drp1) or its binding partners, mitochondrial

dynamics protein of 49 or 51 kDa (MiD49 or 51).

Methods and Results: Group 2 PH was induced by supra-coronary aortic banding

(SAB) in 5-week old male Sprague Dawley rats. Four weeks post SAB, echocardiography

showed marked reduction of tricuspid annular plane systolic excursion (2.9 ± 0.1

vs. 4.0 ± 0.1mm) and pulmonary artery acceleration time (24.3 ± 0.9 vs. 35.4

± 1.8ms) in SAB vs. sham rats. Nine weeks post SAB, left and right heart

catheterization showed significant biventricular increases in end systolic and diastolic

pressure in SAB vs. sham rats (LV: 226 ± 15 vs. 103 ± 5 mmHg, 34 ± 5 vs.

7 ± 1 mmHg; RV: 40 ± 4 vs. 22 ± 1 mmHg, and 4.7 ± 1.5 vs. 0.9 ± 0.5

mmHg, respectively). Picrosirius red staining showed marked biventricular fibrosis

in SAB rats. There was increased muscularization of small pulmonary arteries in

SAB rats. Confocal microscopy showed biventricular mitochondrial depolarization and

fragmentation in SAB vs. sham cardiomyocytes. Transmission electron microscopy

confirmed a marked biventricular reduction in mitochondria size in SAB hearts.
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Immunoblot showed marked biventricular increase in PKM2/PKM1 and MiD51

expression. Mitofusin 2 and mitochondrial pyruvate carrier 1 were increased in SAB LVs.

Conclusions: SAB caused group 2 PH. Impaired RV function and RV fibrosis were

associated with increases in mitochondrial fission and expression of MiD51 and PKM2.

While these changes would be expected to promote increased production of reactive

oxygen species and a glycolytic shift in metabolism, further study is required to determine

the functional consequences of these newly described mitochondrial abnormalities.

Keywords: aortic stenosis, PKM2pyruvate kinaseM2,mitochondrial fission,MiD51, supra-coronary aortic banding

(SAB), group 2 PH, pulmonary hypertension, mitochondrial pyruvate carrier

INTRODUCTION

Group 2 pulmonary hypertension (PH), also known as PH due
to left heart disease (PH-LHD), is defined by the combination
of elevated resting mean pulmonary arterial pressure (mPAP)
(≥25 mmHg) and elevated left heart filling pressures (pulmonary
capillary wedge pressure (PCWP) >15 mmHg and left ventricle
end diastolic pressure (LVEDP) >18 mmHg (1). Left ventricular
myocardial diseases and left-sided valvular diseases are the
commonest causes of Group 2 PH (1).

Currently, there are no approved PH-targeted therapies for
group 2 disease, even though it is the most prevalent form of PH
(2). Existing treatments focus on symptom relief and correction
of the underlying LHD. However, group 2 PH typically cannot be
completely reversed by treating LHD. For example, 78% of mitral
stenosis (MS) patients develop PH (3). After successful mitral
valve replacement surgery, PH persists in approximately half of
patients (4). This sustained PH may relate to the persistence of
adverse pulmonary vascular remodeling, RV fibrosis and/or RV
contractile dysfunction. With the goal of better understanding
the pathophysiology and underlying molecular mechanisms of
group 2 PH, we evaluated a promising mitochondrial metabolic
pathway that has been identified in studies of Group 1 PH (5–
8). We used a well-validated rat model of group 2 PH created by
supra-coronary aortic banding (SAB) (9–11).

In right ventricular hypertrophy (RVH) associated with
group 1 PH, the most prominent pathway alterations at the
transcriptomic level involve mitochondria and are predicted
to result in mitochondrial dysfunction (8). Consistent with
this, there are two pathophysiological relevant mitochondrial
abnormalities commonly seen in the RV in group 1 PH. First,
there is a metabolic shift toward uncoupled glycolysis and away
from glucose oxidation, the Warburg phenomenon, reviewed
in Piao et al. (12). Second, there is an increase in mitochondrial
fission (7). In group 1 PH, activation of pyruvate dehydrogenase
kinase (PDK) inhibits pyruvate dehydrogenase (PDH)
contributing to RVF. Moreover, increased expression/activity
of dynamin-related protein-1 (DRP1)-mediated fission elevates
the production of mitochondria-derived reactive oxygen species,
which contributes to RV dysfunction (7). While restoring
glucose oxidation or inhibiting fission are beneficial in group 1
PH models (7, 13), it is unknown whether similar mechanisms
occur in group 2 PH.

It is also noteworthy that proglycolytic mechanisms occur in
Group 1PH, at least in the pulmonary vasculature, in addition

to PDK activation (14, 15). Notably there is dysregulation
of pyruvate kinase (PK), the final and rate-limiting step in
glycolysis. PK transfers phosphate from phosphoenolpyruvate
to ADP, producing pyruvate and ATP, reviewed in Archer (16).
Acquired changes in the ratio of pyruvate kinase muscle (PKM)
splice variant 2 vs. 1 (specifically and increase in the expressed
PKM2/PKM1 ratio) occurs in endothelial cells and fibroblasts of
group 1 PH patients and contributes to increases in glycolysis and
cell proliferation while reducing apoptosis rates (14, 15).

Drp1 is also known to mediate mitochondrial fission in
the LV. Inhibiting Drp1 improves LV function and prevents
ventricular remodeling in the transverse aortic constriction
mouse model (17). The Drp1 inhibitor mdivi-1 reduces
cardiomyocyte apoptosis and promotes angiogenesis (17).
Inhibitingmitochondrial fission preserves LV function in a global
ischemia model and, in a rodent cardiac arrest model, mdivi-
1 enhances the success of resuscitation (6, 18). However, Drp1
activity relates to many parameters in addition to expression
level, notably its interaction with binding partners on the outer
mitochondrial membrane, including mitochondrial fission factor
(MFF), Fission 1 (Fis1), and mitochondrial dynamics proteins
of 49 and 51 kDa (MiD49 and MiD51) (19). The role of the
changes in expression of PK splice variants andMiDs in the heart
is unstudied in group 2 PH.

In this study we evaluated two hypotheses: First, that the
impairment of RV function in group 2 PH is associated in part
with a biventricular proglycolytic isoform switch from PKM1
to PKM2 predominance. Second, that RVH in group 2 PH is
associated with increased mitochondrial fission, associated with
upregulation of expression of Drp1 and/or its binding partners,
MiD49 and MiD51.

MATERIALS AND METHODS

The experimental protocol has been approved by Queen’s
University Animal Care Committee and the University Research
and Ethic Board. All animals are raised in the Queen’s Animal
Care Facility.

The SAB Model Experimental Design
Five-week-old male Sprague Dawley rats (Charles River,
Montreal, QC) were raised in the Queen’s Animal Care Facility.
After a week of acclimatization, SAB or sham surgery was
performed on the rats to produce SAB and sham groups.
Each experimental cohort was composed of n = 10 rats (4
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sham and 6 SAB) and underwent surgery in the same week.
A total of 2 cohorts were performed for this study (total
n= 20). Echocardiography was performed 4 weeks post-surgery.
Terminal catheterization and tissue collection were done 9 weeks
post-surgery (Supplemental Figure 1).

SAB Surgery
A 2 cm skin incision was made between the second and third
ribs and, subsequently, a 1.5 cm incision of the intercostal muscle
layer. The ribs were retracted and the ascending aorta visualized
(Supplemental Figures 2A–C). A size small (3 × 3mm) Weck R©

HorizonTM titanium clip (Catalog #523735, Teleflex, Markham,
ON) was placed around the ascending aorta using an applicator.
The clip immediately constricts the aorta to ∼50% of
the original diameter (Supplemental Figures 2D,E). Following
aortic constriction, the ribs were approximated with interrupted
4-0 VicrylTM (polyglactin) sutures (Supplemental Figure 2F).
The ventilator was paused for 3 s and air aspirated using a
23G chest-tube in order to re-inflate the lungs. The muscle
layers and the skin were opposed with 4–0 VicrylTM (polyglactin)
sutures and surgical clips were applied over the skin suture
(Supplemental Figures 2G,H). After surgery, rats were returned
to their cages, positioned on their sides and observed until
they were awake and in stable condition. Standard post-
operative care was provided to minimize pain and risk of wound
infection.

Echocardiography
Estimation of pulmonary arterial pressure (PAP) was done using
Doppler ultrasound. Serial 2-dimensional, M-mode and pulsed-
wave Doppler ultrasound recordings were performed under
anesthesia (inhaled, isoflurane, 1.6–2.0%, mixed with humidified
medical air delivered via a cone inhaler). Cardiovascular imaging
was performed using a Vevo R© 2100 (FUJIFILM VisualSonics
Inc, Toronto, ON) phased-array, color-Doppler ultrasound
system with a 37.5 MHz transducer and frame rates up to
1,000/s. Ultrasound studies were performed weekly beginning
1 week post-surgery to measure tricuspid annular plane
systolic excursion (TAPSE), right ventricular wall thickness,
and pulmonary artery acceleration time (PAAT). Mean PAP is
inversely related to PAAT and TAPSE is directly related to RV
function.

Catheterization and Euthanasia
Rats were anesthetized with isoflurane (1.6–2.0%). SBP, LVESP,
and LVEDP were measured in closed-chest rats with a 1.9-F
rat pressure-volume catheter (Scisense Inc. London, ON), which
was introduced via the right common carotid artery. RVESP
and RVEDP were measured from RV pressure-volume loops
created by introduction of the same catheter into the LV via the
right common carotid artery, which was introduced via the right
jugular vein. Finally, the rat was euthanized by exsanguination
while deeply anesthetized.

Tissue Collection
Tissues were harvested immediately following hemodynamic
measurements. The heart was washed and dissected in phosphate

buffered saline (PBS) solution at 0◦C and the RV was separated
from the left ventricle plus septum (LV+S) and weighed. The
RV and LV+S were cut into 3–4 small pieces, frozen in liquid
nitrogen, and stored at −80◦C. Samples of both ventricles were
also fixed with formalin for histology. Picrosirius red staining
was used to measure fibrosis. The lung was processed similarly.
The left lower lobe was inflated and fixed with formalin and later
stained with hematoxylin and eosin (H&E).

Western Blot
Tissues (LV, RV, and lung) were flash frozen and ground into
fine powder using a mortar and pestle. Tissue powder lysates
were prepared in cell lysis buffer (Cell Signaling Technologies,
Beverly MA, USA). For immunoblot analysis, tissue lysates (40–
80 µg) were analyzed on 4–12% NuPAGE gels (Life technologies,
Carlsbad, CA, USA). The proteins were electrotransferred to a
polyvinylidene difluoride (PVDF) membrane (Life technologies,
Carlsbad, CA, USA) and detection of specific proteins was
carried out with the antibodies indicated below, using the
ECL-Plus Western Blotting Detection System (GE Healthcare,
Piscataway, NJ, USA). Total Drp1 (611112) antibody was
purchased from BD transduction Laboratories (San Jose, Ca,
USA). Antibodies were obtained from: MiD49 (16413-1-AP),
MiD51 (20164-1-AP), PKM1 (15821-1-AP), and PKM2 (15822-
1-AP) from Proteintech (Tucson, AZ, USA), Mfn2 (ab56889),
pPDH (ab92696), and PDH (ab110334) fromAbcam (Cambridge
MA, USA),. Vinculin (V9131) and Mitochondrial pyruvate
carrier 1 antibodies (MPC1) from Sigma-Aldrich (St. Louis,
MO, USA) (SAB4502158). Mitochondrial pyruvate carrier 2
antibodies (MPC2) (MABS1914) were obtained from Millipore
(Temecula, CA, USA).

Assessment of Mitochondrial Membrane
Potential in Cardiac Tissues
Mitochondrial membrane potential was qualitatively assessed in
LV and RV muscle section using tetramethylrhodamine methyl
ester (TMRM; Cat # T668, Life Technologies; Carlsbad, CA,
USA). After hemodynamic study, the rat was sacrificed, and the
isolated LV and RV tissue were immediately incubated in Krebs’
solution containing TMRM (250 nM) at 37◦C for 30–45min and
NucBlue R© Live Ready Probes R© Reagent (2 drops/mL), following
the manufacturer’s protocol (Cat # R37605, Life Technologies;
Carlsbad, CA, USA). The tissue was imaged using a Leica
SP8 confocal, laser-scanning microscope (Leica Microsystems;
Wetzlar, Germany) with a 1.40 NA, 63x oil immersion objective
(∼ 4/frames/minute for 5–10min; the microscopist was blinded
to the treatment group). TMRM intensity was measured
using ImageJ software (National Institutes of Health; Bethesda,
MD, USA). The microscopist was blinded to the treatment
group. More details can be found in previously published
study (7).

Transmission Electron Microscopy (TEM)
TEM of the LV and RV were performed on tissues fixed in
osmium tetroxide using an FEI Tecnai Osiris Transmission
Electron Microscope, as previously described (7).
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Pyruvate Dehydrogenase (PDH) Enzyme
Activity Dipstick Assay
PDH enzyme activity was measured in the LV and RV of
SAB vs. Sham rats using frozen tissue powder lysates in
cell lysis buffer (Cell Signaling Technologies, Beverly MA,
USA). The samples were then applied to PDH enzyme
activity dipstick assay following the manufacturer’s protocol
(Cat# ab109882, Abcam, Cambridge MA, USA), as previously
described (20).

Statistical Analysis
Values are expressed as mean ± standard error of mean
(SEM). Statistical comparisons between sham vs. SAB rats
were performed using unpaired, parametric, two-tailed
Student’s t-test. P-values ≤ 0.05, ≤ 0.01, ≤ 0.001, and
≤ 0.0001 are designated with ∗, ∗∗, ∗ ∗ ∗, and ∗ ∗ ∗∗,
respectively. Statistical calculations were performed using
GraphPad Prism 7 (GraphPad Software, Inc., La Jolla,
CA, USA).

RESULTS

SAB surgery induced moderate PH. Four weeks post-SAB,
echocardiography showed a significant increase of LV free wall
(LVFW) thickness, systolic (5.04 ± 0.14 vs. 4.15 ± 0.13mm,
p < 0.0001) and diastolic (2.89 ± 0.11 vs. 1.86 ± 0.06mm,
p < 0.0001). There was also an increase in both systolic and
diastolic RV free wall (RVFW) thickness (1.40 ± 0.08 vs. 1.08
± 0.04mm, p = 0.0044, and 0.77 ± 0.02 vs. 0.61 ± 0.04mm,
p = 0.0030, respectively). PAAT was reduced in SAB vs. sham
(24.3 ± 0.9 vs. 35.4 ± 1.8ms, p < 0.0001), as was the TAPSE
(2.9 ± 0.1 vs. 4.0 ± 0.1mm, p < 0.0001) (Figures 1A,B).
Respiratory rate was significantly increased in the SAB vs. sham
rats (70 ± 4 vs. 53 ± 3 breath/minute, p = 0.0062), but heart
rate was not significantly different between the two groups
(Supplemental Figure 3).

Left heart catheterization showed no significant difference
in the systolic and diastolic blood pressure distal to the band
(dSBP and dDBP, Figures 2A–C,L). As expected, systolic blood
pressure proximal to the band (pSBP) was significantly increased

FIGURE 1 | Echocardiographic measurements of sham vs. supra-coronary aortic banding (SAB) rats at 4 weeks post banding. (A) Representative echocardiographic

images showing development of group 2 PH in SAB rats. (1–2) Left ventricular free wall thickness (LVFW), (3–4) right ventricular free wall thickness (RVFW), and (5–6)

pulmonary artery acceleration time (PAAT), and (7–8) tricuspid annular plane systolic excursion (TAPSE) of sham vs. supra-coronary aortic banding (SAB) rats. (B)

Summary statistics showing significant increase of biventricular thickness and decrease of PAAT and TAPSE in SAB vs. sham. (1) LVFW thickness, (2) diastolic LVFW

thickness, (3) RVFW thickness, (4) diastolic RVFW thickness, (5) PAAT, (6) TAPSE of sham vs. supra-coronary aortic banding rats.
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FIGURE 2 | Hemodynamic studies of sham vs. SAB rats. Left carotid catheterization showing (A) hemodynamic measurement of (B) systolic, and (C) diastolic blood

pressure distal to the band (dSBP and dDBP) and (D) systolic and (E) diastolic blood pressure proximal to the band (pSBP and pDBP). Left heart catheterization

showing (F) hemodynamic measurement of (G) left ventricular end systolic pressure (LVESP) and (H) left ventricular end diastolic pressure (LVEDP). Right heart

catheterization showing (I) hemodynamic measurement of (J) right ventricular end systolic pressure (RVESP) and (K) right ventricular end diastolic pressure (RVEDP).

(L) Schematic drawing showing the anatomical definition of distal and proximal to aortic band.

in SAB vs. sham rats (244 ± 16 vs. 109 ± 5 mmHg, p < 0.0001,
Figure 2D) without alteration of diastolic blood pressure (pDBP,
Figure 2E). LV end systolic pressure (LVESP) and end diastolic
pressure (LVEDP) were increased in SAB vs. control rats (226
± 15 vs. 103 ± 5 mmHg, p < 0.0001) and (34 ± 5 vs. 7 ± 1
mmHg, p < 0.0001), respectively (Figures 2F–H). Right heart
catheterization showed significant increase of RV end systolic and
diastolic pressure (40 ± 4 vs. 22 ± 1 mmHg, p = 0.0006, and 4.7
± 1.5 vs. 0.9± 0.5 mmHg, p= 0.02, respectively) in SAB vs. sham
rats (Figures 2I–K).

There was increased fibrosis in both the LV and RV of SAB
vs. sham rats (Figures 3A–F). Quantitative histology showed
increased muscularization of small pulmonary arterioles
(Figures 3G–I). TMRM staining showed mitochondria
fragmentation (Figures 4A,B,D,E) and reduced TMRM
intensity (Figures 4C–F) in the cardiomyocytes of SAB vs. sham
rats. TEM showed that SAB caused mitochondrial fission with
decreased average area/mitochondria in both LV (0.42± 0.04 vs.
0.20 ± 0.02 µm2, p < 0.0001) and RV (0.69 ± 0.06 vs. 0.33 ±

0.03 µm2 p < 0.0001) (Figures 5I,J).
Western blot showed no change in the expression of total

Drp1 in the LV and RV of SAB vs. sham rats (Figure 6A).
However, there was a significant, biventricular increase in
the expression MiD51 (but not MiD49) in both the LV
(p = 0.0002) and RV (p = 0.0014) of SAB vs. sham rats
(Figure 6B and Supplemental Figure 4, respectively). Mfn2
expression was significantly decreased in the LV (p = 0.0016)

(Figure 6C1) but was unchanged in the RV in SAB vs. sham rats
(Figure 6C2). PKM2 was significantly upregulated and PKM1
was downregulated in both ventricles resulting in significant
increase of PKM2 to PKM1 ratio in the LV (p < 0.0001) and
RV (p < 0.0001) (Figure 7). MPC1 was decreased only in the
LV (p = 0.0488) of SAB rats (Figures 8A,B). Neither the pPDH
to PDH ratio (Supplemental Figure 5) nor the RV PDH enzyme
activity (Supplemental Figure 6) was altered in SAB vs. sham
rats.

DISCUSSION

This study has 3 major findings: (1) the SAB model reliably
produces group 2 PH that is associated with RV fibrosis and
dysfunction as well as adverse pulmonary vascular remodeling;
(2) the group 2 PH is associated with a biventricular increase
in the PKM2/PKM1 expression ratio in SAB rats, potentially
priming the ventricles for a glycolytic shift in metabolism; (3)
there is a biventricular increase in mitochondrial fission that is
associated with an increase in MiD51 expression.

Most studies using the SAB rodent model focus on systemic
hemodynamics and remodeling of the LV. In this study, we
focuses on evaluating the SAB as a means of creating a robust
preclincial model of group 2 PH. Methodologically our study
differs from the few papers that also examine the effects of SAB
on pulmonary hemodynamics and/or the RV, in that we use a
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FIGURE 3 | Histology and confocal microscopy images of sham vs. supra-coronary aortic banding (SAB) rats. Picrosirius red (PSR) staining of left ventricle (LV), and

right ventricle (RV) of (A,D) sham vs. (B,E) SAB rats showing (C,F) increased myocardial fibrosis in SAB rat. Hematoxylin and eosin (H,E) stain of lung cross section of

(G) sham vs. (H) SAB rats showing (I) increased number of muscular pulmonary arteries (PAs) per 50x field. Each dot represents tissue from a unique rat.

FIGURE 4 | Representative confocal microscopy image showing left ventricular (LV) and right ventricular (RV) mitochondrial morphology and membrane potential of

(A,D) sham rats vs. (B,E) supra-coronary aortic banding rats. The mitochondria (red) are labeled with tetramethylrhodamin, methyl ester (TMRM) and the nuclei (blue)

are labeled with DAPI. (C) LV and (F) RV TMRM intensity. Each dot represents a heart from a unique rat.
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FIGURE 5 | Representative transmission electron microscopy (TEM) images showing reduced average mitochondria area in the left ventricle (LV) and right ventricle

(RV) at 2 different magnifications. (A) Low magnification of sham LV, (B) supra-coronary aortic banding (SAB) LV, (C) sham RV, and (D) SAB LV. High magnification

showing mitochondrial ultra-sturcture in (E) sham LV, (F) SAB LV, (G) sham RV, and (H) SAB RV. (I) Average LV mitochondrial area, and (J) average RV mitochondrial

area. Each dot represents a single mitochondrion.

surgical clip to constrict the aorta uniformly without circulatory
interruption, as previously described (10, 21). In contrast, most
groups studying group 2 PH have used a ligature to create the
stenosis (9, 11, 22). In these studies, an 18-gauge blunted needle
is placed parallel to the ascending aorta and a non-dissolvable
suture tied snugly around the aorta and the needle (11). The
needle is then removed leaving behind a fixed-size stenosis. In
transverse aortic constriction (TAC) mice, a 26-gauge needle
is typically used (22). In our experience, the suture method
suffers from high intra-operative mortality and inconsistency
in the degree of constriction/size of the stenosis. In contrast,
our operations are successful with low mortality (∼5% initial
and ∼10% at 30 days) and low variability (trans-clip pressure
gradient 134.8± 15.5mmHg). The clipmethod reduces operative
mortality, decreases wound size, and increases reproducibility.

To our knowledge, this is the first evidence that chronic
pressure overload alone can induce significant increase of
biventricular PKM2/PKM1 ratio in vivo. PKM2 upregulation
has been reported as a signature in the failing heart both in

sunitinib-treated mice and human subjects (23). Shirai et al.
report upregulation of PKM2 in macrophages from patients
with atherosclerotic coronary artery disease compared to control
subjects, suggesting PKM2 promotes a proinflammatory state
(24). Two recent studies by Caruso et al. and Zhang et al. report
increased PKM2/PKM1 ratio in the pulmonary endothelial
and fibroblast cells from animal models and human subjects
with group 1 PH, respectively (14, 15). In addition, there are
numerus studies on the role of PKM2 in cancer (25) and,
most recently, in inflammation (26). Despite these studies,
the mechanism of pressure overload-induced PKM2/PKM1
upregulation remains elusive, because pressure overload not
only increases the workload of the heart, but it also induces
other changes, such as increased fibrosis (Figures 3C,F). Hence,
upregulation of PKM2/PKM1 in SAB rats cannot all be
explained by metabolic adaption in response to increased
cardiac workload. Fibrotic response is usually a result of
inflammation (27), and aortic banding induces inflammation
(28). Emerging evidence suggests a correlation between increased
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FIGURE 6 | Expression levels of mitochondrial fission/fusion mediators in sham vs. supra-coronary aortic banding (SAB) rats. (A) Western blot showing no change in

the expression level of total dynamin-related protein 1 (Drp1) in the (1) left ventricle (LV) and (2) right ventricle (RV) of supra-coronary aortic banding (SAB) rats vs. sham

rats. (B) Western blot showing significant upregulation of mitochondrial dynamics of 51 kDa protein (MiD51) in the (1) LV and (2) RV of supra-coronary aortic banding

(SAB) rats vs. sham rats. (C) Western blot showing significant downregulation of mitofusin-2 (Mfn2) in the (1) LV and (2) RV of supra-coronary aortic banding (SAB) rats

vs. sham rats. Each band represents a unique animal. Two experimental cohorts were done; hence two groups are shown, labeled as 1 and 2. The same vinculin

loading control is used for proteins probed on the same membrane.
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FIGURE 7 | Pyruvate kinase muscle (PKM) isoform 2 to 1 ratio is increased in supra-coronary aortic banding (SAB) vs. sham rats. Western blot showing upregulation

of PKM2 and downregulation of PKM1, thus resulting in significant increase of PKM2/PKM1 ratio in the (A) left ventricle (LV) and (B) right ventricle (RV) of

supra-coronary aortic banding (SAB) rats vs. sham rats. Each band represents a unique animal. Two experimental cohorts were done; hence two groups are shown,

labeled as 1 and 2. The same vinculin loading control is used for proteins probed on the same membrane.

PKM2 and proinflammatory state (24, 26). Thus, SAB-induced
inflammation may be another mechanism that results in the
upregulation of PKM2/PKM1. Future studies treating SAB rats
with anti-inflammatory strategies, which has been shown to
reduce cardiac fibrosis (29), may restore normal PKM2/PKM1
ratios.

Furthermore, an increased PKM2/PKM1 ratio in both
ventricles is expected to result in a proglycolytic shift and causes
simultaneous decreased pyruvate production and increased
lactate production in the SAB vs. sham rats (16). This is
expected to contribute to LV and RV dysfunction in this
model. We do not expect nor observe an increase in pPDH
(Supplemental Figure 5), since this post-translationally inactive
form of PDH largely reflects increased pyruvate dehydrogenase
kinase activation. Consistent with this, there are no significant
changes in PDH enzyme activity based on the PDH dipstick
assay (Supplemental Figure 6), suggesting that in the SABmodel
of group 2 PH the isoform switch from PKM1 to PKM2 is
the predominant metabolic switch. Downregulation of MPC1 in
the LV suggests that not only is there a shift to glycolysis but
also that pyruvate transport into mitochondria may be impaired
(Figure 8A).

Recently, Liang et al. report that PKM2 translocates to
mitochondria under oxidative stress (30). Furthermore, Wu
et al. show that PKM2 overexpression inhibits the expression
of Drp1 and induces mitochondrial fusion in HeLa and HCT-
116 cells (31). However, we observe that mitochondria within
the cardiomyocytes of both ventricles are fragmented and
depolarized (Figures 4, 5). The increased mitochondrial fission,
evident from both confocal and TEM imaging in the LV and RV

of SAB rats, is associated with increased MiD51. The mechanism
for upregulation of MiD51 is not assessed in this study. However,
knowing that PKM2 translocates to mitochondria (30) and
affects Drp1 expression (31), it would be interesting to study
the relationship between PKM2 and MiD51 in the future. In
addition, a decrease in expression of the fusion mediator Mfn2
(Figure 6C) may also contribute to the observed mitochondrial
fragmentation. Ryan et al. observed decreased expression ofMfn2
in lung samples from PAH patients and female PAH animal
models (32). In this study, we observe significantly decreased
expression of Mfn2 in the LV but not the RV.

Limitations
Male Sprague-Dawley rats treated with SAB developed elevated
LVEDP (34 ± 5 vs. 7 ± 1 mmHg), which meets the
definition for group 2 PH (LVEDP > 18 mmHg). One
limitation of this study is the lack of direct measurement
of PAP. The use of a straight conductance catheter does
not allow placement of the catheter in the PA. Thus, we
can only measure RVESP, which is significantly elevated in
SAB vs. sham rats (40 ± 4 vs. 22 ± 1 mmHg). RVESP
is a close estimate of pulmonary arterial systolic blood
pressure. However, we cannot measure PA diastolic blood
pressure. Nonetheless, given the large rise in RVESP, significant
increase of RVFW thickness, and shortening of PAAT on
echocardiography we can assume the PAP is significantly
increased in SAB vs. sham rats despite the lack of direct
measurement.

Mitochondria respiration is not reported in this study because
of large variation and poor reproducibility when we attempted
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FIGURE 8 | Mitochondrial pyruvate carrier 1 (MPC1) is upregulated in supra-coronary aortic banding (SAB) vs. sham rats. (A) Western blot showing significant

upregulation of MPC1, but no change in MPC2 level in the left ventricle (LV) of SAB vs. sham rats. (B) Western blot showing no significant change of MPC 1&2

expression in the right ventricle (RV) of SAB vs. sham rats. Each band represents a unique animal. Three experimental cohorts are done; hence three groups are

shown, labeled as 1–3. The same vinculin loading control is used for proteins probed on the same membrane.

to measure isolated mitochondria from heart tissue using the
Seahorse analyzer.

Total Drp1 did not change in SAB vs. sham rats (Figure 6A).
Another major limitation of this study is the lack phospho-Drp1-
Ser616 (pDrp1-S616). pDrp1-S616 is the active form of Drp1
that participates in mitochondrial fission. Despite numerous
attempts, we saw no pDrp1-S616 on immunofluorescent
staining. We suspect pDrp1-S616 is degraded during the tissue
harvesting process. Moreover, the increased expression of the
Drp1 binding partner MiD51 (Figure 6B) may be sufficient to
enhance fission without net increases in total or activated Drp1
expression.

Because we used immunoblotting to detect total cardiac
changes in protein expression in whole LV or RV, we cannot
determine which cell type(s) within the myocardium (endothelial
cells, fibroblasts, vascular smooth muscle cells, cardiac myocytes
or inflammatory cells) contribute(s) to the upregulation of the
PKM2 to PKM1 ratio.

Finally, because this is meant to be a hypothesis-generating
study, we have not attempted to intervene and alter expression of
PKM1/PKM2 or MiD51 to determine the effects on group 2 PH

or ventricular function. In vivo interventions will be required to
determine whether these novel mitochondrial arrangements are
adaptive or pathologic, which will determine the potential value
of these proteins as therapeutic targets in group 2 PH.
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Supplemental Figure 1 | Supra-coronary aortic banding (SAB) group 2

pulmonary hypertension rat model experimental design.

Supplemental Figure 2 | Supra-coronary aortic banding surgery. (A) Incision

made at 3rd intercostal space and held open with three surgical hooks; (B) the

aorta was located; (C) the connective tissue between aorta and pulmonary artery

was carefully removed with a pair of blunt tweezers; (D) a small metal clip was

applied to the isolated aorta, constricting it by 50–60%; (E) the clipped aorta and

surrounding structure; (F) a 16-gauge chest tube was inserted and the chest was

closed by 4–0 Vicryl suture; (G) closing the outer muscle layer with simple

continuous suture; (H) closing the outer skin with simple interrupted suture and

2–3 surgical clips.

Supplemental Figure 3 | Heart rate and respiratory rate 4 weeks post banding

surgery. (A) Representative electrocardiogram and respiratory trace of sham and

supra-coronary aortic banding (SAB) rat. (B) Respiratory rate is significantly

increased in SAB vs. sham rats. (C) Heart rate is not significantly increased in SAB

vs. sham rats.

Supplemental Figure 4 | Western blot showing no change in mitochondrial

dynamics of 49 kDa protein (MiD49) in the (A) left ventricle (LV) and (B) right

ventricle (RV) of supra-coronary aortic banding (SAB) rats vs. sham rats. Each

band represents a unique animal. Two experimental cohorts were done; hence

two groups are shown, labeled as 1 and 2. The same vinculin loading control is

used for proteins probed on the same membrane.

Supplemental Figure 5 | Western blot showing no significant change of

phospho-pyruvate dehydrogenase (pPDH) to pyruvate dehydrogenase (PDH) ratio

in the (A) left ventricle (LV) and (B) right ventricle (RV) of supra-coronary aortic

banding (SAB) rats vs. sham rats. Each band represents a unique animal. Two

experimental cohorts were done; hence two groups are shown, labeled as 1 and

2. The same vinculin loading control is used for proteins probed on the same

membrane.

Supplemental Figure 6 | Pyruvate dehydrogenase (PDH) enzyme activity

dipstick assay showing no significant change in the (A) left ventricle (LV) and the

(B) right ventricle (RV) PDH enzyme activity.
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