37 research outputs found

    Electro-orientation and electrorotation of metal nanowires

    No full text
    The physical mechanisms responsible for the electrical orientation and electrical rotation of metal nanowires suspended in an electrolyte as a function of frequency of the applied ac electric field are examined theoretically and experimentally. The alignment of a nanowire in an ac field with a fixed direction is called electro-orientation. The induced constant rotation of a nanowire in a rotating electric field is called electrorotation. In both situations, the applied electric field interacts with the induced charge in the electrical double layer at the metal-electrolyte interface, causing rotation due to the torque on the induced dipole, and also from induced-charge electro-osmotic flow around the particle. First, we describe the dipole theory that describes electro-orientation and electrorotation of perfectly polarizable metal rods. Second, based on a slender approximation, an analytical theory that describes induced-charge electro-orientation and electrorotation of metal nanowires is provided. Finally, experimental measurements of the electro-orientation and electrorotation of metal nanowires are presented and compared with theory, providing a comprehensive study of the relative importance between induced-dipole rotation and induced-charge electro-osmotic rotation

    How clear-cutting affects fire severity and soil properties in a Mediterranean ecosystem

    Get PDF
    Forest management practices in Mediterranean ecosystems are frequently employed to reduce both the risk and severity of wildfires. However, these pre-fire treatments may influence the effects of wildfire events on soil properties. The aim of this study is to examine the short-term effects of a wildfire that broke out in 2015 on the soil properties of three sites: two exposed to management practices in different years e 2005 (site M05B) and 2015 (site M15B) e and one that did not undergo any management (NMB) and to compare their properties with those recorded in a plot (Control) unaffected by the 2015 wildfire. We analyzed aggregate stability (AS), soil organic matter (SOM) content, total nitrogen (TN), carbon/ nitrogen ratio (C/N), inorganic carbon (IC), pH, electrical conductivity (EC), extractable calcium (Ca), magnesium (Mg), sodium (Na), and potassium (K), microbial biomass carbon (Cmic) and basal soil respiration (BSR). In the managed plots, a clear-cutting operation was conducted, whereby part of the vegetation was cut and left covering the soil surface. The AS values recorded at the Control site were significantly higher than those recorded at M05B, whereas the TN and SOM values at NMB were significantly higher than those recorded at M05B. IC was significantly higher at M05B than at the other plots. There were no significant differences in C/N ratio between the analyzed sites. Soil pH at M05B was significantly higher than the value recorded at the Control plot. Extractable Ca was significantly higher at NMB than at both M05B and the Control, while extractable Mg was significantly lower at M05B than at NMB. Extractable K was significantly lower at the Control than at the three fire-affected plots. Cmic was significantly higher at NMB than at the Control. BSR, BSR/C and BSR/Cmic values at the fire-affected sites were significantly lower than those recorded at the Control. No significant differences were identified in Cmic/C. Overall, a comparison of the pre-fire treatments showed that NMB was the practice that had the least negative effects on the soil properties studied, followed by M15B, and that fire severity was highest at M05B due to the accumulation of dead plant fuelThis study was supported by the POSTFIRE Project (CGL2013-47862-C2-1 and 2-R) and the POSTFIRE_CARE Project (CGL2016-75178-C2-2-R [AEI/FEDER, UE]),financed by the Spanish Research Agency (AIE) and the European Union through European Funding for Regional Development (FEDER) and the FPU Program (FPU 014/00037) of the Ministry of Education, Cultureand Sports and Program 2014SGR825 of the Generalitat de Catalunya

    Biological and chemical factors controlling the patchy distribution of soil water repellency among plant species in a Mediterranean semiarid forest

    Get PDF
    Natural soil water repellency is a property that has already been observed in forest soils and is characterized by its patchy distribution. There are many factors involved in its development. In this work, we have studied a large number of chemical and biological factors under the influence of different plant species (. Pinus halepensis, Quercus rotundifolia, Cistus albidus and Rosmarinus officinalis) to learn which has the greatest responsibility for its presence and persistence in the top-soil layer. We observed strong and significant correlations between ergosterol, glomalin related soil protein (GRSP), extractable lipids, soil organic matter (SOM) content and water repellency (WR). Our results suggested lipid fraction as the principal factor. Moreover, apart from Pinus, fungal biomass seems to be also related to the SOM content. Soil WR found under Pinus appears to be the most influenced by fungi. Quality of SOM, to be precise, lipid fraction could be responsible for WR and its relationship with fungal activity.Ministerio de Economía y Competitividad CGL2010- 21670-C02-01, CGL2012-38655-C04-0

    Effects of salvage logging on soil properties and vegetation recovery in a fire-affected Mediterranean forest: A two year monitoring research

    Get PDF
    Post-firemanagement can have an additional impact on the ecosystem; in somecases, evenmore severe than the fire. Salvage logging (SL) is a common practice in most fire-affected areas. The management of burnt wood can determine microclimatic conditions and seriously affect soil properties. In some cases, the way of doing it, using heavy machinery, and the vulnerability of soils to erosion and degradation can make this management potentially aggressive to soil. Research was done in “Sierra de Mariola Natural Park” (E Spain). A forest fire (N500 ha) occurred in July 2012. In February 2013, SL treatment was applied in a part of the affected forest. Plots for monitoring this effect were installed in this area and in a similar nearby area where no treatment was done, used as control (C). Soil samplings were done immediately after treatment and every 6 months during two years. Some soil properties were analysed, including organic matter (OM) content, nitrogen (N) available phosphorous (P) basal soil respiration (BSR), microbial biomass carbon (Cmic), bulk density (BD),water repellency (WR), aggregate stability (AS) and field capacity (FC). SL treatment caused an increase in BD, a decrease of AS, FC, OMand N. In the control area, in general the soil properties remained constant across the 2 years of monitoring, and the microbial parameters (BSR and Cmic), initially affected by the fire, recovered faster in C than in the SL area. Plant recovery also showed some differences between treatments. No significant differenceswere observed in the number of plant species recorded (richness) comparing C versus SL plots, but the number of individuals of each species (evenness)was significantly higher in C plots. In conclusion, we can affirmthat for the conditions of this study case, SL had a negative effect on the soil-plant system.To the “Ministerio de Economía and Competitividad” of the Spanish Government for financing the POSTFIRE project (CGL2013- 47862-C2-1-R) and Alcoi counci

    A simple levitated-drop tensiometer

    Get PDF
    A reliable, simple, and affordable liquid tensiometer is presented in this paper. The instrument consists of 72 ultrasonic transmitters in a tractor beam configuration that levitates small liquid samples (droplets) in air. Under operation, the instrument imparts a pressure instability that causes the droplet to vibrate while still levitating. Droplet oscillations are then detected by a photodiode, and the signal is recorded by an oscilloscope. The frequency of these oscillations is obtained and then used to obtain the effective surface tension of the sample. The instrument operates at the millisecond scale time (t < 12.5 ms), with very small liquid volumes (∼0.5 μl), and the sample is recoverable after testing. The instrument has been experimentally validated with acetone, ethanol, Fluorinert FC-40, water, and whole milk

    Temporal characterisation of soil-plant natural recovery related to fire severity in burned Pinus halepensis Mill. forests

    Get PDF
    Despite Mediterranean ecosystems' high resilience to fire, both climate and land use change, and alterations in fire regimes increase their vulnerability to fire by affecting the long-term natural recovery of ecosystem services. The objective of this work is to study the effects of fire severity on biochemical soil indicators, such as chemical composition or enzymatic activity, related to time after fire and natural vegetation recovery (soil-plant interphase). Soil samples from three wildfires occurring 3, 15 and 21 years ago were taken in the south-eastern Iberian Peninsula (semiarid climate). Sampling included three fire severity levels in naturally regenerated (and changing to shrublands) Pinus halepensis Mill. forests. In the short-term post-fire period, phosphorus concentration, electrical conductivity and urease activity were positively linked to fire severity, and also influenced β-glucosidade activity in a negative relationship. During the 15–21-year post-fire period, the effects related to medium-high fire severity were negligible and soil quality indicators were linked to natural regeneration success. The results showed that most soil properties recovered in the long term after fire (21 years). These outcomes will help managers and stakeholders to implement management tools to stabilise soils and to restore burned ecosystems affected by medium-high fire severity. Such knowledge can be considered in adaptive forest management to reduce the negative effects of wildfires and desertification, and to improve the resilience of vulnerable ecosystems in a global change scenario.This study was supported by a grant for research initiation provided by the Excma. Diputación Albacete (DIPU4-AB2015) and by the funds provided by University Castilla-La Mancha to the Forest Ecology Research Group.The authors with to thank the Spanish Institute for Agricultural and Food Research and Technology (INIA) for the funding awarded through National Research Projects GEPRIF (RTA2014-00011-C06)
    corecore