6 research outputs found
Integral mathematical model of power quality disturbances
Power quality (PQ) disturbances lead to severe problems in industries and electrical grids. To mitigate PQ problems, the accurate detection and classification of the possible disturbances are essential. A large number of studies exists in this field. The first research step in these studies is to obtain several distorted signals to test the classification systems. In this regard, the most common trend is the generation of signals from mathematical models. In the literature, we can find several models with significant differences among them. However, to the best of our knowledge, there is no integral model that considers all types of distortions. This work presents an integral mathematical model based on the models found in the literature. The model also includes new types of combined disturbances. Twenty-nine disturbances are considered. Additionally, this work includes a software version of this integral model that is publicly available to be used by any interested researcher. In this way, PQ disturbances can be generated in a fast and automatic way. This software aims to facilitate future studies, supporting researchers in the modelling stage
Susceptibility characterization of beam pipe radiated noise for the PXD detector in Belle II experiment
The new Pixel Vertex Detector (PXD) used in the upgrade of the high energy physics experiment Belle II is based on the DEPFET technology. Since the PXD is 2 mm far from the beam pipe, the effects of radiated interferences may be taken into account. Though the EM wave associated to the beam is very well confined (skin depth), the beam pipe is grounded to the accelerator and it may have noise currents on its external face due to pumps, auxiliary electronics, power converters, etc. which may produce radiated noise (H field). This analysis is part of the EMC approach that covers the analysis of the emissions and immunity characteristics, as well as the coupling phenomena and grounding issues to define the susceptibility levels required to ensure the successful integration of the detector and, specifically, to achieve the designed performance of the front-end electronics
Noise propagation issues in Belle II pixel detector power cable
The vertex detector used in the upgrade of High-Energy physics experiment Belle II includes DEPFET pixel detector (PXD) technology. In this complex topology the power supply units and the front-end electronics are connected through a PXD power cable bundle which may propagate the output noise from the power supplies to the vertex area. This paper presents a study of the propagation of noise caused by power converters in the PXD cable bundle based on Multi-conductor Transmission Line (MTL) theory. The work exposes the effect of the complex cable topology and shield connections on the noise propagation, which has an impact on the requirements of the power supplies. This analysis is part of the electromagnetic compatibility based design focused on functional safety to define the shield connections and power supply specifications required to ensure the successful integration of the detector and, specifically, to achieve the designed performance of the front-end electronics