32 research outputs found

    Targeting cell cycle regulators in hematologic malignancies

    Get PDF
    © 2015 Aleem and Arceci. Hematologic malignancies represent the fourth most frequently diagnosed cancer in economically developed countries. In hematologic malignancies normal hematopoiesis is interrupted by uncontrolled growth of a genetically altered stem or progenitor cell (HSPC) that maintains its ability of self-renewal. Cyclin-dependent kinases (CDKs) not only regulate the mammalian cell cycle, but also influence other vital cellular processes, such as stem cell renewal, differentiation, transcription, epigenetic regulation, apoptosis, and DNA repair. Chromosomal translocations, amplification, overexpression and altered CDK activities have been described in different types of human cancer, which have made them attractive targets for pharmacological inhibition. Mouse models deficient for one or more CDKs have significantly contributed to our current understanding of the physiological functions of CDKs, as well as their roles in human cancer. The present review focuses on selected cell cycle kinases with recent emerging key functions in hematopoiesis and in hematopoietic malignancies, such as CDK6 and its role in MLL-rearranged leukemia and acute lymphocytic leukemia, CDK1 and its regulator WEE-1 in acute myeloid leukemia (AML), and cyclin C/CDK8/CDK19 complexes in T-cell acute lymphocytic leukemia. The knowledge gained from gene knockout experiments in mice of these kinases is also summarized. An overview of compounds targeting these kinases, which are currently in clinical development in various solid tumors and hematopoietic malignances, is presented. These include the CDK4/CDK6 inhibitors (palbociclib, LEE011, LY2835219), pan-CDK inhibitors that target CDK1 (dinaciclib, flavopiridol, AT7519, TG02, P276-00, terampeprocol and RGB 286638) as well as the WEE-1 kinase inhibitor, MK-1775. The advantage of combination therapy of cell cycle inhibitors with conventional chemotherapeutic agents used in the treatment of AML, such as cytarabine, is discussed

    Childhood acute lymphoblastic leukemia in the Middle East and neighboring countries: A prospective multi-institutional international collaborative study (CALLME1) by the Middle East Childhood Cancer Alliance (MECCA)

    Get PDF
    Background: Little is known about childhood ALL in the Middle East. This study was undertaken by MECCA as initial efforts in collaborative data collection to provide clinical and demographic information on children with ALL in the Middle East. Procedure: Clinical and laboratory data for patients with ALL between January 2008 and April 2012 were prospectively collected from institutions in 14 Middle East countries and entered into a custom-built-database during induction phase. All laboratory studies including cytogenetics were done at local institutions. Results: The 1,171 voluntarily enrolled patients had a mean age of 6.1±3.9 years and 59.2 were boys. T-ALL represented 14.8 and 84.2 had B-precursor ALL. At diagnosis, 5.6 had CNS disease. The distribution of common genetic abnormalities reflected a similar percentage of hyperdiploidy (25.6), but a lower percentage of ETV6-RUNX1 translocation (14.7) compared to large series reported from Western populations. By clinical criteria, 47.1 were low/standard risk, 16.9 were intermediate risk, and 36 were high risk. Most patients received all their care at the same unit (96.9). Patients had excellent induction response to chemotherapy with an overall complete remission rate of 96. Induction toxicities were acceptable. Conclusions: This first collaborative study has established a process for prospective data collection and future multinational collaborative research in the Middle East. Despite the limitations of an incomplete population-based study, it provides the first comprehensive baseline data on clinical characteristics, laboratory evaluation, induction outcome, and toxicity. Further work is planned to uncover possible biologic differences of ALL in the region and to improve diagnosis and management. Pediatr Blood Cancer 2014; 61:1403-1410. © 2014 Wiley Periodicals, Inc
    corecore