512 research outputs found

    The nested structure of urban business clusters

    Get PDF
    Although the cluster theory literature is bountiful in economics and regional science, there is still a lack of understanding of how the geographical scales of analysis (neighbourhood, city, region) relate to one another and impact the observed phenomenon, and to which extent the clusters are industrially bound or geographically consistent. In this paper, we cluster spatial economic activities through a multi-scalar approach following percolation theory. We consider both the industrial similarity and the geographical proximity of firms, through their joint probability function which is constructed as a copula. This gives rise to an emergent nested hierarchy of geoindustrial clusters, which enables us to analyse the relationships between the different scales, and specific industrial sectors. Using longitudinal business microdata from the Office for National Statistics, we look at the evolution of clusters which spans from very local groups of businesses to the metropolitan level, in 2007 and in 2014, so that the changes stemming from the financial crisis can be observed.Comment: 20 pages, 10 figure

    Paradoxical Interpretations of Urban Scaling Laws

    Get PDF
    Scaling laws are powerful summaries of the variations of urban attributes with city size. However, the validity of their universal meaning for cities is hampered by the observation that different scaling regimes can be encountered for the same territory, time and attribute, depending on the criteria used to delineate cities. The aim of this paper is to present new insights concerning this variation, coupled with a sensitivity analysis of urban scaling in France, for several socio-economic and infrastructural attributes from data collected exhaustively at the local level. The sensitivity analysis considers different aggregations of local units for which data are given by the Population Census. We produce a large variety of definitions of cities (approximatively 5000) by aggregating local Census units corresponding to the systematic combination of three definitional criteria: density, commuting flows and population cutoffs. We then measure the magnitude of scaling estimations and their sensitivity to city definitions for several urban indicators, showing for example that simple population cutoffs impact dramatically on the results obtained for a given system and attribute. Variations are interpreted with respect to the meaning of the attributes (socio-economic descriptors as well as infrastructure) and the urban definitions used (understood as the combination of the three criteria). Because of the Modifiable Areal Unit Problem and of the heterogeneous morphologies and social landscapes in the cities internal space, scaling estimations are subject to large variations, distorting many of the conclusions on which generative models are based. We conclude that examining scaling variations might be an opportunity to understand better the inner composition of cities with regard to their size, i.e. to link the scales of the city-system with the system of cities

    On the problem of boundaries and scaling for urban street networks

    Get PDF
    Urban morphology has presented significant intellectual challenges to mathematicians and physicists ever since the eighteenth century, when Euler first explored the famous Konigsberg bridges problem. Many important regularities and scaling laws have been observed in urban studies, including Zipf's law and Gibrat's law, rendering cities attractive systems for analysis within statistical physics. Nevertheless, a broad consensus on how cities and their boundaries are defined is still lacking. Applying an elementary clustering technique to the street intersection space, we show that growth curves for the maximum cluster size of the largest cities in the UK and in California collapse to a single curve, namely the logistic. Subsequently, by introducing the concept of the condensation threshold, we show that natural boundaries of cities can be well defined in a universal way. This allows us to study and discuss systematically some of the regularities that are present in cities. We show that some scaling laws present consistent behaviour in space and time, thus suggesting the presence of common principles at the basis of the evolution of urban systems
    corecore