Challenges remain in tissue engineering to control the spatial and temporal mechanical and
biochemical architectures of scaffolds. Unique capabilities of stereolithography (SL) for
fabricating multi-material spatially-controlled bioactive scaffolds were explored in this work. To
accomplish multi-material builds with implantable materials, a new mini-vat setup was designed,
constructed and placed on top of the existing build platform to allow for accurate and selfaligning X-Y registration during fabrication. Precise quantities of photocrosslinkable solution
were added to and removed from the mini-vat using micro-pipettes. The mini-vat setup allowed
the part to be easily removed and rinsed and different photocrosslinkable solutions could be
easily removed and added to the vat to aid in multi-material fabrication. Two photocrosslinkable
hydrogel biopolymers, poly(ethylene glycol dimethacrylate) (PEG-dma, molecular wt 1,000) and
poly(ethylene glycol)-diacrylate (PEG-da, molecular wt 3,400), were used as the primary
scaffold materials, and controlled concentrations of fluorescently labeled dextran or bioactive
PEG were prescribed and fabricated in different regions of the scaffold using SL. The
equilibrium swelling behavior of the two biopolymers after SL fabrication was determined and
used to design constructs with the specified dimensions at the swollen state. Two methods were
used to measure the spatial gradients enabled by this process with multi-material spatial control
successfully demonstrated down to 500-µm. First, the presence of the fluorescent component in
specific regions of the scaffold was analyzed with fluorescent microscopy. Second, human
dermal fibroblast cells were seeded on top of the fabricated scaffolds with selective bioactivity,
and phase contrast microscopy images were used to show specific localization of cells in the
regions patterned with bioactive PEG. The use of multi-material SL and the relative ease of
conjugating different bioactive ligands or growth factors to PEG allows for the fabrication of
tailored three-dimensional constructs with specified spatially-controlled bioactivity.Mechanical Engineerin