21 research outputs found

    Retention of Re in metakaolin based geopolymer in the presence of an organic reductant – an experimental study

    Get PDF
    The goal of this research was to examine the change in redox sensitive contaminant retention and leaching behavior from a model geopolymer system, during oxidation and carbonation, in the presence of an organic reductant. The behavior of redox sensitive elements under variable environmental conditions is specifically important for understanding the leaching of radionuclides retained in geopolymeric materials (e.g. Tc) that are soluble when oxidized and insoluble under reducing conditions. An alkali-activated metakaolin geopolymer with high silica/alumina ratio was selected as a model material. Rhenium was selected as the model redox sensitive element, which exhibits a large valence (-3 to +7) and solubility range. Rhenium was introduced in its most oxidized form (VII) as Re2S7. Ascorbic acid was used as a reducing agent during geopolymer casting due to its high solubility and homogeneous distribution within the matrix. Cylindrical monoliths were cured for 90 days under an inert atmosphere (N2) and then aged for 60 days under 98% N2 + 2% CO2 or CO2 deficient air, at a constant relative humidity (68%). The samples were then subjected to EPA 1313 pH dependent leaching test and EPA 1315 monolith leaching test. Leachates were analyzed using DOC and ICP techniques. XRD and SEM – EDS imaging and analyses were used to characterizes the solids Results show that Re has precipitated as ReS2 (IV) in the matrix. The pH dependent leaching test show that Re was released homogenously throughout most of the pH range (3-12). However, the retention of the material aged under CO2 deficient air was three times lower, indicating that the main effect on leaching from this material is of the oxidation process. The natural pH values were 11.3 and 12 for the material aged under 2% CO2 and for material aged under CO2 deficient air respectively, indicating minor carbonation in the former, however, no carbonate minerals were detected in the matrix. Monolith leaching results show that the geopolymers aged under CO2 deficient air have retained significantly less Re (0.24% leaching) relative to the sample aged under 2% CO2 (0.07wt % leaching). -log(diffusivity) values were in the order of 15 and 16 for CO2 deficient air and 2% CO2 respectively. There is a clear positive correlation between the amount of Re and DOC released from the samples, where their amounts are significantly larger for the samples aged under CO2 deficient air, indicating that the main Re-release mechanism from these samples is related to chelation to organic species under oxidizing conditions

    Cesium immobilization in metakaolin-based geopolymers elucidated by 133Cs solid state NMR spectroscopy

    No full text
    Geopolymers are promising candidates for nuclear-waste immobilization, and more specifically for the immobilization of radioactive cesium. Low-Si metakaolin-based geopolymers cured at temperatures of 40°C in the presence of Cs ions generate a mixture of amorphous and crystalline phases including a Cs-bearing zeolite F phase. Using a combination of 133Cs solid-state NMR and X-ray powder diffraction measurements we were able to show that Cs preferentially binds to zeolite F even when zeolite F is not the dominant phase in the matrix. Moreover, post-leaching NMR experiments indicate that zeolite F binds Cs more efficiently than the remaining crystalline or amorphous phases. Tailoring geopolymer formulations so that a large fraction of zeolite F is generated may therefore be a promising route for the production of immobilization matrices for cesium

    Sr immobilization in irradiated Portland cement paste exposed to carbonation

    No full text
    International audienceCement based materials are widely used as binding matrices for radionuclides in low and intermediate level waste management applications. We studied the effect of irradiation and carbonation under atmospheric condition on the leaching of Sr from Portland cement paste. Samples were exposed to gamma irradiation or subjected to thermal treatment under either inert or atmospheric conditions. Leaching tests were performed and supplemented by post-leaching characterization including local chemical analysis (LA-ICPMS) crystallographic analysis (XRD), and EPMA imaging. The combination of these methods enabled us to link between the crystallography, texture and composition of the treated samples and their ability to retain Sr ions. Results show that carbonation was the main factor determining the retention of Sr ions, whereas irradiation did not have a significant effect. Moreover, carbonation has a positive effect on the retention of Sr ions in the matrix with the formation of a carbonated zone

    Effect of Alirocumab on Lipoprotein(a) and Cardiovascular Risk After Acute Coronary Syndrome

    No full text

    Alirocumab and cardiovascular outcomes after acute coronary syndrome

    No full text
    BACKGROUN

    Effects of alirocumab on types of myocardial infarction: insights from the ODYSSEY OUTCOMES trial

    No full text

    Effects of alirocumab on types of myocardial infarction: insights from the ODYSSEY OUTCOMES trial

    No full text

    Alirocumab and Cardiovascular Outcomes after Acute Coronary Syndrome

    No full text
    BACKGROUN

    Alirocumab in patients with polyvascular disease and recent acute coronary syndrome ODYSSEY OUTCOMES trial

    No full text
    corecore