147 research outputs found

    A Proposed 3D Extension to the 3GPP/ITU Channel Model for 800 MHz and 2.6 GHz Bands

    Get PDF

    Modal Rayleigh-like streaming in layered acoustofluidic devices

    No full text
    Classical Rayleigh streaming is well known and can be modelled using Nyborg’s limiting velocity method as driven by fluid velocities adjacent to the walls parallel to the axis of the main acoustic resonance. We have demonstrated previously the existence and the mechanism of four-quadrant transducer plane streaming patterns in thin-layered acoustofluidic devices which are driven by the limiting velocities on the walls perpendicular to the axis of the main acoustic propagation. We have recently found experimentally that there is a third case which resembles Rayleigh streaming but is a more complex pattern related to three-dimensional cavity modes of an enclosure. This streaming has vortex sizes related to the effective wavelength in each cavity axis of the modes which can be much larger than those found in the one-dimensional case with Rayleigh streaming. We will call this here modal Rayleigh-like streaming and show that it can be important in layered acoustofluidic manipulation devices. This paper seeks to establish the conditions under which each of these is dominant and shows how the limiting velocity field for each relates to different parts of the complex acoustic intensity patterns at the driving boundaries

    Constraints on a Parity-Conserving/Time-Reversal-Non-Conserving Interaction

    Get PDF
    Time-Reversal-Invariance non-conservation has now been unequivocally demonstrated in a direct measurement at CPLEAR. What about tests of time-reversal-invariance in systems other than the kaon system? Tests of time-reversal-invariance belong to two classes: searches for parity violating (P-odd)/time-reversal-invariance-odd (T-odd) interactions, and for P-even/T-odd interactions (assuming CPT conservation this implies C-conjugation non-conservation). Limits on a P-odd/T-odd interaction follow from measurements of the electric dipole moment of the neutron (with a present upper limit of 6 x 10^-26 e.cm [95% C.L.]). It provides a limit on a P-odd/T-odd pion-nucleon coupling constant which is less than 10^-4 times the weak interaction strength. Experimental limits on a P-even/T-odd interaction are much less stringent. Following the standard approach of describing the nucleon-nucleon interaction in terms of meson exchanges, it can be shown that only charged rho-meson exchange and A_1 meson exchange can lead to a P-even/T-odd interaction. The better constraints stem from measurements of the electric dipole moment of the neutron and from measurements of charge-symmetry breaking in neutron-proton elastic scattering. The latter experiments were executed at TRIUMF (497 and 347 MeV) and at IUCF (183 MeV). Weak decay experiments may provide limits which will possibly be comparable. All other experiments, like gamma decay experiments, detailed balance experiments, polarization - analyzing power difference determinations, and five-fold correlation experiments with polarized incident nucleons and aligned nuclear targets, have been shown to be at least an order of magnitude less sensitive.Comment: 15 pages LaTeX, including 5 PostScript figures. Uses ijmpe1.sty. To appear in International Journal of Modern Physics E (IJMPE). Slight change in short abstrac

    Short-term thermal and electric load forecasting in buildings

    Get PDF
    Increasing environmental awareness and energy costs encourage the increase of the contribution of renewable energy sources (RES) to the energy supply of buildings. However, the integration of RES and energy storage systems introduces significant challenges for the energy management system (EMS) of complex building energy systems. An energy management strategy based on fixed control rules may fail to efficiently operate such systems. These circumstances raise the need to apply advanced control strategies. A promising approach is model predictive control (MPC), which allows the consideration of the expected dynamic system behavior as well as of forecasts of the loads and of the renewable energy generated. Obviously, the performance of an MPC-based EMS crucially depends on the accuracy of the load forecasts. The goal of this paper is to compare the capabilities of neural networks (NNs) and of the least squares support vector machine (LS-SVM) in forecasting the hourly thermal and electric load of buildings. Two short-term load forecasting algorithms are evaluated which treat every hour of the day separately by an individual forecasting model. Additionally, the algorithms also distinguish between working days, weekends and holidays. In order to adapt to changing load patterns, the algorithms use the sliding window training approach. Both algorithms are tested using the measured thermal and electric load data of a large office building and of a small building which houses a kindergarten. In the tests conducted, in general, the forecasting algorithm based on the LS-SVM shows a better performance than the forecasting algorithm based on NNs. In addition, the LS-SVM involves fewer free parameters to be determined than a NN, which makes the former easier to apply. The results reported further indicate that the accurate forecasting of the load of a small building is the more challenging task compared to the load forecasting of a large office building. Furthermore, using a training window size of more than 20 days does not significantly improve the performance of the algorithms examined

    Muscle preflex response to perturbations in locomotion: In vitro experiments and simulations with realistic boundary conditions

    Get PDF
    Neuromuscular control loops feature substantial communication delays, but mammals run robustly even in the most adverse conditions. In vivo experiments and computer simulation results suggest that muscles’ preflex—an immediate mechanical response to a perturbation—could be the critical contributor. Muscle preflexes act within a few milliseconds, an order of magnitude faster than neural reflexes. Their short-lasting action makes mechanical preflexes hard to quantify in vivo. Muscle models, on the other hand, require further improvement of their prediction accuracy during the non-standard conditions of perturbed locomotion. Our study aims to quantify the mechanical work done by muscles during the preflex phase (preflex work) and test their mechanical force modulation. We performed in vitro experiments with biological muscle fibers under physiological boundary conditions, which we determined in computer simulations of perturbed hopping. Our findings show that muscles initially resist impacts with a stereotypical stiffness response—identified as short-range stiffness—regardless of the exact perturbation condition. We then observe a velocity adaptation to the force related to the amount of perturbation similar to a damping response. The main contributor to the preflex work modulation is not the change in force due to a change in fiber stretch velocity (fiber damping characteristics) but the change in magnitude of the stretch due to the leg dynamics in the perturbed conditions. Our results confirm previous findings that muscle stiffness is activity-dependent and show that also damping characteristics are activity-dependent. These results indicate that neural control could tune the preflex properties of muscles in expectation of ground conditions leading to previously inexplicable neuromuscular adaptation speeds

    Description of the Magnetic Field and Divergence of Multisolenoid Aharonov-Bohm Potential

    Get PDF
    Explicit formulas for the magnetic field and divergence of multisolenoid Aharonov-Bohm potential are obtained; the mathematical essence of this potential is explained. It is shown that the magnetic field and divergence of this potential are very singular generalized functions concentrated at a finite number of thin solenoids. Deficiency index is found for the minimal operator generated by the Aharonov-Bohm differential expression

    3D Channel Models:Principles, Characteristics, and System Implications

    Get PDF

    The Prevalence of S. Aureus Nasal Colonisation and its Antibiotic Sensitivity Pattern amongst Primary School Pupils

    Get PDF
    Staphylococcus aureus is one of the most adaptable human pathogens. Nasal Staphylococcus aureus is the main cause of community-associated staphylococcal infections. This project aimed to study the prevalence of nasal carriage of Staphylococcus aureus and community-associated methicillin resistant Staphylococcus aureus (CA-MRSA) and evaluate their antibiotic susceptibility tests among primary school children at Zakho city, Kurdistan region, Iraq. Nasal swabs were taken from a total of 300 primary school pupils aged 8-12 years. Collected nasal swabs were processed according to the standard bacteriological culture and isolates were identified using mannitol fermentation, Gram stain, catalase test and coagulase test. Antimicrobial susceptibility test was carried out on Muller-Hinton agar (MHA) to determine the susceptibility of S. aureus and CA-MRSA towards antibiotics. 30% (90/300) of the primary school children carried S. aureus. The nasal carriage of MRSA was 4% (12/300) among participants. All MRSA isolates were sensitive to vancomycin, doxycycline, amikacin and ciprofloxacin. This study showed that the incidence of S. aureus and CA-MRSA is comparable with reports from elsewhere. Measures are needed to keep the emergence and transmission of these pathogens to a lowest. Antimicrobial susceptibility testing of all S. aureus isolates is crucial for treatment of MRSA. Further studies are required to detect the risk factors of the acquisition of MRSA
    • 

    corecore