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ABSTRACT 

Increasing environmental awareness and energy costs encourage the increase of the 

contribution of renewable energy sources (RES) to the energy supply of buildings. However, 

the integration of RES and energy storage systems introduces significant challenges for the 

energy management system (EMS) of complex building energy systems. An energy 

management strategy based on fixed control rules may fail to efficiently operate such systems. 

These circumstances raise the need to apply advanced control strategies. A promising 

approach is model predictive control (MPC), which allows the consideration of the expected 

dynamic system behavior as well as of forecasts of the loads and of the renewable energy 

generated. Obviously, the performance of an MPC-based EMS crucially depends on the 

accuracy of the load forecasts. 

The goal of this paper is to compare the capabilities of neural networks (NNs) and of the least 

squares support vector machine (LS-SVM) in forecasting the hourly thermal and electric load 

of buildings. Two short-term load forecasting algorithms are evaluated which treat every hour 

of the day separately by an individual forecasting model. Additionally, the algorithms also 

distinguish between working days, weekends and holidays. In order to adapt to changing load 

patterns, the algorithms use the sliding window training approach. Both algorithms are tested 

using the measured thermal and electric load data of a large office building and of a small 

building which houses a kindergarten. 

In the tests conducted, in general, the forecasting algorithm based on the LS-SVM shows a 

better performance than the forecasting algorithm based on NNs. In addition, the LS-SVM 

involves fewer free parameters to be determined than a NN, which makes the former easier to 

apply. 

The results reported further indicate that the accurate forecasting of the load of a small 

building is the more challenging task compared to the load forecasting of a large office 

building. Furthermore, using a training window size of more than 20 days does not 

significantly improve the performance of the algorithms examined. 

Keywords: short-term load forecasting, neural networks, least squares support vector 

machine 

INTRODUCTION 

Due to sustainability concerns, fossil energy sources in the energy supply of buildings are 

increasingly being substituted by renewable energy sources (RES). However, if RES and 

energy storage devices are added to conventional building energy systems, the complexity of 

the complete system increases considerably. An energy management strategy based on fixed 

control rules may fail to efficiently operate such a complex energy system [1]. These 

circumstances raise the need to introduce advanced control strategies. A promising approach 

is model predictive control (MPC), which is based on solving at each sampling interval a 

constrained optimal control problem for the current state of the system. Thus, MPC allows the 

consideration of the expected dynamic system behavior as well as of forecasts of the loads 

CISBAT 2013 - September 4-6, 2013 - Lausanne, Switzerland 495



and of the renewable energy generated. Obviously, accurate load forecasts are essential for the 

successful performance of an MPC-based energy management system (EMS). 

Typically, an MPC-based EMS requires load forecasts with a prediction horizon of up to a 

few days, which in the literature is often referred to as short-term load forecasting (STLF). 

Especially for the forecasting of the electric load of large territories, various approaches have 

been proposed for that purpose [2]. In general, these approaches are divided into two 

categories [3]. Classical approaches include methods such as time series models, regression 

models and techniques based on Kalman filtering. Newer approaches apply methods from the 

research field of artificial and computational intelligence such as artificial neural networks, 

fuzzy inference and fuzzy-neural models, expert systems, and support vector machines 

(SVMs). Although there is a large volume of literature on this topic, almost no applications of 

STLF to the thermal and electric loads of buildings have been reported [4]. Forrester and 

Wepfer [5], for instance, proposed a method based on multiple linear regression to provide 

forecasts of the energy demand of a large, commercial building. Dhar et al. [6] applied a 

Fourier series model to predict the hourly heating and cooling energy use in commercial 

buildings. Several researchers studied neural networks (NNs) to develop a building STLF 

algorithm [7, 8, 9]. Hou and Lian [10] studied in their work the feasibility and applicability of 

the SVM for the specific case of building load forecasting. In [4], the performances of an 

autoregressive model, an autoregressive integrated moving average (ARIMA) model, a NN 

and a Bayesian model for the forecasting of the electric load of an air-conditioned non-

residential building are examined.  

In this paper, two building STLF algorithms providing hourly load forecasts are presented and 

evaluated. The first algorithm is based on NNs and the second one uses least squares SVM 

(LS-SVM) regression models. The performances of the two building STLF algorithms are 

tested using the measured thermal and electric load data of a large office building and of a 

small building which houses a kindergarten. 

INTRODUCTION TO NEURAL NETWORKS AND LEAST SQUARES SUPPORT VECTOR 

MACHINE 

This section provides a brief introduction to NNs and the LS-SVM. 

Neural Networks 

NNs have received much attention in the field of STLF [11]. They mimic the behavior of the 

human brain in order to provide an approximation of the nonlinear relationship between input 

and output variables [8]. The basic unit of a NN is the artificial neuron, which receives 

information through a number of input nodes, processes it internally, and outputs a response 

[11]. Typically, the neurons in a NN are organized in layers. For more information about 

NNs, the interested reader is referred to, e.g., [12]. 

Least Squares Support Vector Machine 

LS-SVM, as proposed by Suykens and Vandewalle [13], is an algorithm based on the 

standard SVM method developed by Vapnik [14] for classification and regression. The basic 

idea of the standard SVM method applied for regression is to map the original input vectors 

into a feature space with higher dimensionality using a nonlinear mapping function, and then 

to perform a linear regression in the feature space [14]. Instead of using inequality constraints 

as in SVM regression, the LS-SVM uses equality constraints and a least squares error term to 

determine the weight vector and the bias of the regression model. Therefore, training the LS-

SVM regression model is equivalent to solving a set of linear equations instead of solving a 

quadratic programming problem as in SVM regression [13]. 
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BUILDING STLF ALGORITHMS PROPOSED 

In this work, the load forecasting problem is regarded as being equivalent to describing the 

relationship between the load and the factors most likely to influence it. Since the electric and 

thermal loads of a building strongly depend on the activity in the building, it is proposed to 

distinguish between working days, weekends and holidays, and therefore, to treat each day 

type individually. This approach avoids much of the non-linearity of the forecasting process 

[4]. Furthermore, on days of the same day type, building loads typically exhibit a similar daily 

pattern. Hence, the building STLF algorithms evaluated in this work treat each hour of the day 

separately by an individual forecasting model, so that a total amount of 24 different models 

have to be trained for each day type. The variables chosen as input variables of the individual 

hour-by-hour models are the ambient air temperature and the vertical solar radiation on the 

south-east and south-west oriented facades of the building in the corresponding hour. A 

variety of methods exists to describe the relationship between these input variables selected 

and the load. In this work, the NN model and the LS-SVM model are tested for that purpose. 

In order to adapt to changing load patterns, the models are trained with the sliding window 

approach, i.e., as soon as new measurement data is available it is added to the training data set 

and the oldest data is removed. In doing so, the size of the training data set is kept constant 

[8].  

EXPERIMENTAL RESULTS 

To test the building STLF algorithms proposed, the electric and thermal (including domestic 

hot water) load data of two different buildings are used. These buildings are located next to 

each other on the Science City Hönggerberg campus of the ETH Zürich. The first building is a 

large office building built in 2008. It is equipped with a heating, ventilation, and air 

conditioning (HVAC) system. The second building is a small one which houses a 

kindergarten. Both buildings have a south-east and a south-west oriented facade. The two 

buildings are shown in Fig. 1. Figure 2 depicts the hourly electric and thermal loads of these 

buildings on January 29, 2013.  

 

Figure 1: The two test buildings: An office building (left) and a kindergarten building (right). 

 

Figure 2: The hourly electric and thermal loads of the test buildings on January 29, 2013. 

(a) 

(b) 
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A weather station located in the neighboring village provides measurement data of the 

ambient temperature and the global horizontal solar radiation. The Erbs et al. correlation [15] 

for the estimation of the diffuse component of the horizontal solar radiation and the Perez et 

al. sky model [16] are used to compute the vertical solar radiation on the building facades 

from the horizontally measured global solar radiation data. The training of the hour-by-hour 

models is performed using these measurement data of the input variables. However, the load 

forecasts are generated using COSMO-2 and COSMO-7 weather forecasts provided by the 

Swiss national weather and climate service [17].  

To test both building STLF algorithms, one-day-ahead forecasts generated at midnight are 

used. The training data is always updated before a new forecast is generated. Three different 

training window sizes are examined: 20, 50 and 100 days of the same day type. The analyses 

are performed using data acquired in the period November 2011 – March 2013, whereas in 

this work only the results for working days are presented.  

The building STLF algorithms evaluated are implemented in MATLAB. The results for the 

hour-by-hour models based on NNs are obtained using the MATLAB Neural Network 

Toolbox which applies a feedforward NN [18]. The NNs are trained using the Levenberg-

Marquardt backpropagation algorithm. Both, NNs with one hidden layer with two neurons 

and NNs with one hidden layer with four neurons were examined. Since the NNs with two 

hidden neurons performed better, only these results are reported. The hour-by-hour models 

based on the LS-SVM model are implemented using the LS-SVMlab toolbox [19]. The radial 

basis function is chosen as the kernel function. 

The accuracy of the load forecasts are measured by the root mean square error (RMSE) and 

the coefficient of variation of the RMSE (CV-RMSE), which are computed as 
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where iy  is the real value, iŷ  is the value forecasted, and N represents the number of samples 

in the data set. 

The results of both building STLF algorithms in the case of the office building are depicted in 

Fig. 3, whereas Fig. 4 shows the results for the kindergarten building. In general, the LS-

SVM-based STLF algorithm performs better than the NN-based STLF algorithm. It is also 

noticeable that the CV-RMSE values of both the electric and thermal load forecasts are 

significant larger for the kindergarten building than for the office building. Obviously, the 

load forecasts for a large office building can be generated more accurately since its load 

profiles are less sensitive to the behavior of individual occupants.  

The performances reported further show that for both buildings the accuracy of the electric 

load forecasts is slightly improved by increasing the size of the training window. On the other 

hand, the accuracy of the thermal load forecasts decreases with increasing training window 

size. The reason is that the thermal load of both buildings varies much more with the season 

than the electric load. Therefore, in the case of a large training window size, the training data 

contains data from another season deteriorating the training of the models.  
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Figure 3: Performances of the NN-based STLF algorithm (black) and the LS-SVM-based 

STLF algorithm (gray) in the case of the office building. 

 

Figure 4: Performances of the NN-based STLF algorithm (black) and the LS-SVM-based 

STLF algorithm (gray) in the case of the kindergarten building. 

CONCLUSION 

In this paper, the capabilities of neural networks and of the least squares support vector 

machine in thermal and electric load forecasting in buildings are examined and compared. 

The following conclusions are drawn from the tests conducted using the measured thermal 

and electric load data of a large office building and of a small kindergarten building: 

 The least squares support vector machine performs better than neural networks in 

building load forecasting. 

 The least squares support vector machine involves fewer free parameters than a NN. 

This circumstance makes the application of the forecasting algorithm based on the 

least squares support vector machine easier compared to the forecasting algorithm 

based on neural networks. 

 Compared to the large office building, the accurate load forecasting of a small building 

is a more difficult task. 

 Using training window sizes of more than 20 days provides no significant benefit. 

Future research will focus on the systematic selection of the input variables of the hour-by-

hour models. 
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