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Explicit formulas for the magnetic field and divergence of multisolenoid Aharonov-Bohm potential are obtained; the mathematical
essence of this potential is explained. It is shown that the magnetic field and divergence of this potential are very singular generalized
functions concentrated at a finite number of thin solenoids. Deficiency index is found for the minimal operator generated by the

Aharonov-Bohm differential expression.

1. Introduction

66 years have passed since the publication of Aharonov
and Bohm’s “Significance of Electromagnetic Potential in the
Quantum Theory” [1], and since then interest in this paper
has never faded. According to Web of Science®-Google Scholar,
it has been cited 5680 times (as of December 2014)! Note that
there are plenty of both supporters and opponents of this
work (see, e.g., [2, 3]).

The purpose of our work is to find explicit formulas for
the magnetic field and divergence of multisolenoid Ahar-
onov-Bohm potential and to explain the mathematical essence
of it. The obtained formulas show (see Theorems 1 and 3)
that the magnetic field and divergence of this potential are
very singular generalized functions concentrated at a finite
number of thin solenoids perpendicular to the plane x,Ox,.

2. Main Results

Leté, = (x(lk), x;k)), k =1,2,...,n, bepairwise distinct points
inRy,leta, : $;(0) — Ry, k=1,2,...,n, be real, bounded,

and measurable functions on the unit circle §;(0) ¢ R,,
and Q' = Ry \ {&, k = 1,2,...,n}. Define the magnetic
Aharonov-Bohm potential as follows:

A(x)

N x‘fk) 1 ® ©
= a, X5+ X, ', X, — X ) 1
k=1 k(lx_gkl |x—§k|2( 27 e ) €))

x=(x,x,) € Q'

where

|x = &| = \/(xl - x(lk))2 + (x2 - x§">)2. (2)

As far as we know, in all the earlier works (except for [4])
dedicated to the Aharonov-Bohm effect (for short, AB effect),
the functions a;((x — &)/|x = &), k = 1,2,...,n, are
constants.

The following theorems are true (in case n = 1 they were
proved in [4]).
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Theorem 1. Let the magnetic field B = V x A be generated
by the magnetic Aharonov-Bohm potential (1) in the sense of
generalized functions. Then the following equality is true:

B=VxA= Z “;ak(e)de]a(x—&k), 3)

k=1

where 8(x — &), k = 1,2,...,n, are the Dirac functions and
V = (9/0x,,0/0x,) is the gradient operator.

Proof. Let
Ax) = (A, A,), (4)

where

n x £k> x2+x;k)
cEa(Ey ol

(k) ©)
_ i ( x =& ) X%
k=1 |x Ekl |x - Ekl
Then the definition of magnetic field
Bovxa=n_ %y (6)
x 0x, ox,
J Bf (x)dx

2

:J {[Z <Ii Zl) -&[ ] ox

—X +x2 :| of (x,x,)
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implies that for every function f(x) € C;°(R,) we have

J Bf (x)dx
R,
7
0A, 0A, @)
=L2 ox, - axz f(x1, %) dxydx,.
Taking into account the identity
0A, 0A,
axl - axz f(xl’xz)
(8)

_9 _0 A Yo
- axl (szf) ax2 (Axlf) sz axl + Axl axz

and the Green formula, we rewrite relation (7) as follows:

J Bf (x)dx
R,
)

af ('xl’xz))dx dxz
1 .

2 0x,

of (x1,%,) B

= A
J’Rz ( o axz

Hence, by virtue of (5), we get

3 x=§ \x-x" ] of (x1, %)
[Z (Ix €k|>|x—gk1|2] 0x, }d"ldxz (10)

_ C x =& ) |:_x2+x;k) of (x1,%,) B
,;1 <|J (|x & |x-&° 9%

where

_ x =& Xp — xgk) of (x,x,)
()= a (Ix m) [ oEf o
- x3” f (x1, %)
lx - Ek|2 0x,

(1)

]dxldxz,
k=12,...,n

Using the transformation of plane into itself defined by the
formulas

Ly =x — xgk),

t, = x, — x3, (12)

(t=x-&),

X, = x(lk) of (x1,%,) ] }
|x—§k|2 0x,

dx dx; = - Z Ji (f)
k=1

and considering the equalities

of (x,,x,) - of (t1 + xgk),tz + xgk))
ox, ot, ’
) ; (13)
of (x,,%,) ~ of (tl +x( ) b+ xg ))
ox, ot,
in (11), we arrive at the following formula:
()= J < ) I of (t, + .1, + x39)
T It/ | 1t oty
1y 9 (0 + 50,0, ) (14)
dt,dt,,
It)? ot,
k=1,2,...,n.
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After transition to polar coordinates
t, = rcosH,
t, =rsin6, 15)
r>0, —n<0<m (t=r(cosb,sinb)),

and using the equalities

of (1, + 5%, 1, + x)
ot

of (r cos 0 + x(lk), rsin6 + xgk)) or
or ot,

of (r cos + x(lk), rsin@ + xgk)) 00

i 0 ot

of (r cos 6 + x(lk), rsin@ + xgk))
= 5 cos@

I (f) = J+OO Jﬂ a (cos 6, sin 6) {c059
0 T

[ of (r cosf + x, rsin @ + xgk))
. or

[ of (rcosf + x® rsing + xgk))
. or

of (r cos 0 + xgk), rsinf + xgk)) sin@

of (r cosf + xik), rsin6 + xgk)) sin@
00 r’
of (1, + 5,1, + <)
ot,

of (r cos + xﬁk), rsinf + xgk)) or

- or a_t2

of (r cos 0 + x(lk), rsin6 + xgk)) 20

" 30 ot

of (r cosf + x\F, rsin 6 + xgk)) _
= sin 0

or

of (r cos 0 + x(lk), rsin6 + xgk)) cos
+ b
00 r

(16)

we get

cosf —

sinf +

3 . ]+sm9

17)

of (r cosO + xgk),rsine + X

of (rcos6 + x®, rsin@ + x¥
il ! 2 )COSOHdrdG
.

00

(k)) dr do.

+00 m
= J J ay (cos 0, sin 9)
0

-7

Taking into account f(x) € C;°(R,) and denoting 4, (0) =
a(cos 0, sin 0), from (17) we have

i () = =f (=1, %) j a, (0)do
7 (18)
—-f &) | a0
The Dirac function §(x — &) acts as follows:
(6 (x=&), f(x) = f(&)- (19)

Then the functional defined by the right-hand side of (18) is a
generalized function. Thus, formula (18) can be rewritten in
the following way:

Jk(f)=—“

U

4 de] (6(x-&), f ()

([ «@ao]ot-5).50).

k=12,...,n

Due to (20), equality (10) has the following form:

(B, f (x)) = L Bf (x) dx

2

kzz; (“_: @ (0) de] 8 (x—&) »f(x)> Q1)

_ (z; “;ak (O)dé)] 5(x—€k),f(x)>-

Consequently, we have

BszA:zn:[J

k=177

U

. (0) de] S(x-&). (22

The theorem is proved. O

Remark 2. The formula

B =§1 U"n o (e)de] 8 (x—&) (23)



implies that if the condition

r o, (0)d0 =0 (24)

holds for every k from {1,2,...,n}, then the AB effect is
absent because the total magnetic flux of the magnetic field B

- xgk)) / |x - fk| (
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passing through the closed contour that covers all the points
& = (xgk),x2 )) k=1,2,...,n, is equal to zero.

The conditions for both the presence and absence of
the AB effect in multiply connected domains are thoroughly
studied in [3, 5].

Theorem 3. Let the divergence divA = V - A be generated

by the magnetic Aharonov-Bohm potential (1) in the sense of
generalized functions. Then the following equality is true:

_ (k)) |x Ei)x _xgk)

divA = ZVp<| ! [aa"((xl

=& (3 = x9) /|x - &) |x = &l
(25)
RGO RANCS <">)/|x—fk|)x1_xgk>”
a(( (k))/|x 5k|) |x = & ’
where
1 a‘Zk ((xl _x(lk))/lx—ka(xz —xik))/lx—fkl) X, — xék)
Vp (k)
|x - Ek| 8((x1—x1 )/|x—fk|) |x — &
(26)
s da (3, = x10) /|x = &, (e = x) /| = &) x, - Y‘)]}’ kel2 m

a((x2 -

are singular generalized functions; the letters V.p. mean
“Cauchy principal value.”

0A, 0A, 0
(diVA,f(x))=(V'A,f(x))=JR ( L Z)f(x)dx=—L <Ax1 f(x) + A

0x; 0x,

xgk)) / |x - Ekl)

|x Ek|

Proof. Let f(x) € C;°(R,). Then, by the definition of the
derivative of generalized function, using formulas (5), we
have

of (x) )
0x; 2 0x,

k) of (x1,%,)

» (k)
_ li x =& > [‘xz +x, of (xl,xz)
k; «|0<6r30 ,Lx_gk|>6 < X =&l /| |x-& on

—i[ lim Ik&(f)]

st 0<6—0

where

_ X — fk
lia (f) = Lx—fklzé % < x - & )

) [—x2 + X o of (x1,x,)
|x—5k| axl

Ix o o ]dxldxz} 27
k

(28)

Using substitutions (12) and (15) and formulas (13) and (16),
we obtain
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) (k) (k) (k)
¢ taf(t1+x1 b+ X5 ) t af(l‘1+x1 b+ X5 ) +oo m
I :J a (—) 2 + — dt,dt :J J ay (cos0,sin0
ko (f) AT [|t| o, m o, =0 | s ( )
0 rc059+x rsm9+x(k) of (rcos8 +x¥,rsin6 + x¥) g
-q4-—sinf f( )cose— f( . 2 )sm@ + cos
or a0 r
of (r cosO + x ) rsin + x(k)) of (r cosO+ x(k) rsinf + xgk)) cos
. sin @ + drdo
or r (29)
+oo o7 af(rc0s9+x rsm9+x(k)) +00 1 m af(rc0s9+x( ) rsm0+x(k))
= J J a (0) —dr do = J —drj a; (0) do
- 00 r s 1 Ja a0
+00 @ +00 1 i 6f(rcos@+xk)rs1n6+xk))
:—J —drj ak(G)f(rc056+x ,rsin 0 + x, )d@—j —er- a, (0) dae,
8 s r Ja 00
k=12,...,n
Now, to express a, (6) in Cartesian coordinates x; and x,, we  we find
put
(k) (k) cosf OMy (x,x,)/0x,
X=X Xy — _
M, (x,,x,)=a ' _ aMk _ sin 0 BMk(xl,xz)/axz
g ( ! 2) k < |X £k| |X Ekl ) - (6) - 00 - cosf —sinf/r
( o 0) (0) (30) sinf cos6/r
=g (cos0,sin0) = a ,
k k _ oM, (x1,x,) OM; (x1,%,)
=r| —=——Fcos - ————=sin0
k = 1, 2,...,n. a.x2 axl (32)
Having solved the system of equations _OM; (%, x,) (x x(k))
T o, Vb
oM, (x1,x,)  OM; cosf O0M; sin 6 ’
ox, o 30 _W(xz_xgo), k=12...n.
X1
OM; (x4,
k (%1, %,) _ OM; sin0 + oM, cos9, (31)
0x, or 0 r
Differentiating the composite function M (x;, x,) in x; and
k=12,...,n x, and using formula (32), we find

xgk)) /|x- fk|)

— xgk)) (x2 _

al (6)— aak ((xl _xgk))/|x_€k|)(x2_
k 0((1 — %) /|~ &)

. oay, ((

&

x39) >

|x _£k|3

B((x2 —x )

) =&l (s xék’)/lx—m)(
¢ = &1)

et D) e

lx_fkl

|x—£k|

[aak ((x, - x)
3 ((x, - x®) [ [x~ &)

. oa, ((

)/l =& (o= 2) |x—sk|><

1 B (xl xﬁk))
e =& |x_5k|

* x(lk)) (xz -

(k))/lx f| (x2
)

9((x, /]x-&])

"))/Ix—fk|)<_(

(k)
| 3 |3 - )>] (Xz xgk))
X = Sk
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L0 ((x1 = 1%) =&l (v = 2”) e = Gl) ey =20 B (31 = 0°) /2 = Gl (2 - 97) /[ - &)
o((x-x")/ Ix—EkI) el 3((2 = 2") /1 - &)
k
) xl——xg) k=12 n
|x = &
(33)
Passing to the limit in (29) as§ — 0 and taking into account
(33), we obtain
1 aak((xl—xﬁk))/lx—ﬁl ( ) |x f|)x —x2
lim I 5 (f) = —V-P-J 7|~
0<6—0 R, |x—fk| a((x —Xl ) Ix Ekl) |.X £k|
(34)
Oay ((xl —x(lk))/|x—§k|,(x2 xgk))/|x—fk|) x; -1
+ © fx)dx, k=12,...,n
a((xz—x2 )/|x—£k|) |x = &
It is seen from (27) and (34) that the following equality is
true for every f(x) € Cy°(R,):
(divA, f (x))
: L 000 Bl o) ) 91— ) = 8 (5= 50) = 6,
= ZV’P'J | —® - 1 F —® N _
k=1 R [ |x =& B((xl X1 )/lx fkl) e = & B((x2 X2 )/|x Ek') = &
f(x)dx (35)
L ey T MR TS R R T OSSR
=AN R (1 = x7) /Jx ~ &) |x— & a((xz X/ x-&)) k—&] |’
)
Thus, the following equality is true in the sense of genera-
lized functions:
1 aak ((x1 - xgk)) / |X - 'fk| (x - x(k)) / |x - Ek|) Xy — xgk)
divA = ZVp (k)
x - & 3((x, - x®) /]x - &]) |x = &
) . (36)
N aak((xl - g))/|x—fk| (x - x} ))/|x—§k|)x —x(lk)]}‘
0 (2 = x37) / |x ~ &) | = &
The theorem is proved. O  with the magnetic Aharonov-Bohm potential of type (1),
where b.’s (k = 1,2,...,n) are real numbers.
Consider in L,(R,) the symmetric operator H, with the
Screening every thin solenoid & = (x¥,x®,x;) (k = . P4 0o Iy
1,2,...,n, x; € R;) with the use of Dirac funcuon O(x — domfim D(HQ) o Co (RZ \ {51.) Ez»---,.fn}) (CO.(Q ). 1 tl,le
£)(k = 1,2,..., n), we obtain a multicenter Schrodinger tote}hty of all infinitely differentiable finite functions in Q'),
operator which acts as follows:

(iV+A(x))2—b18(x—51)—b26(x—52)—~--
-b0(x-¢&,),

Hyy (x) = (iV + A (x))* v (x),
y(x) € CSO (R, \ {51’5%"

(38)

&)
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We denote by H the closure of the operator H,,.
Let

s
J 4 0)d0 =G, +op, k=12....n (39
-7
where @, is the integral part and o is the fractional part of the
number '[_nn a,(0)dO. Obviously, 0 < o < 1, k = 1,2,...,n.
Without loss of generality, we will assume that there exists an
integer I < n such that
0<a; <1, if j=1,2,...,1,
(40)

OC':O,

: ifj=l+11+2,...,n

Theorem 4. (i) The domain D(H,y) of the conjugate operator
H; coincides with the set

D(Hy) ={y (x): v (x) € L, (R,)

(41)
MWy (Q), (Y +A ) v (x) € L, (Ry)},

where W22,loc(Q,) is a local second-order Sobolev space.
(ii) Deficiency index of the operator H is (21, 2), where | is

an integer (I < n) defined in (40).

Proof. (i) Asthe domain of the operator H,, isdensein L,(R,),
it has a conjugate operator Hy;. The domain of this conjugate
operator D(H,) is the totality of all y(x) from L,(R,) for
which there exist u(x) € L,(R,) such that

(Hop (), 9 (%)) = (9 (x),u(x)), (42)

for every ¢(x) € D(H,), and Hyy(x) = u(x). From
(Hop (x), ¥ (x)) = (¢ (x), Hyy (%)), (43)

it follows that u(x) = @iV + A(x))zlp(x) in the sense of
generalized functions in CSO(Q'). Hence, in view of the
ellipticity of the operator (iV + A(x))?, we have y(x) €
W10 (Q) (see [6]).

(ii) Considering the notations

: x—Ek)
A = ok
1 () giak(kf—fd

R (=, + 29, x, - x),

|x —5k|2

=3 a(fm)

k=I+1

1
g (e,
X =Gk

x=(x,%,) € Q,

in (1), we rewrite the potential A(x) in the form of the sum of
two summands:

Ax)=A;(x)+ A, (x). (45)

Now we introduce the magnetic /-flux potential

!
X (k) (k)
B(x) = =Xy + X5 X1 — X, ),
kgl |x—£k|2 ( 2 2 1 1 ) (46)

x = (x,x,) € Q,

where o is the fractional part of the number fﬂ a,(0)do.

It is proved in [7] that the minimal operator H, 5 gen-
erated by the differential expression (iV + B(x))* has the
deficiency index (21, 2I). It follows from the results of [7, 8]
that A,(x) ~ B(x) and A,(x) ~ 0; that is, the pairs of
potentials (A, (x), B(x)) and (A,(x), 0) are gauge equivalent.
Consequently, the assertion (ii) of the theorem follows from
the gauge equivalence of the potentials A(x) and B(x). The
theorem is proved. O

Remark 5. The assertions of Theorem 4 stay true if the Ahar-
onov-Bohm solenoids lie in a homogeneous magnetic field of
intensity y, that is, for potentials of the form

A(x) + <—gx2,§x1). (47)

Now let us make a few concluding remarks about the
mathematical justification for the AB effect. Proceeding from
Berezin and Faddeev’s idea (see [9]), we arrive at the conclu-
sion that the rigorous mathematical justification for the Ahar-
onov-Bohm effect is that the pure Aharonov-Bohm operator
H ,y lies among the self-adjoint extensions of the operator Hy;
that is,

H, C Hyp € Hy. (48)

For local and nonlocal §-interactions without magnetic field
this idea was confirmed in many works (see, e.g., [10-13]),
while for the Aharonov-Bohm operator it was confirmed in
[7, 8, 14]. So the following question remains open for the
potential of form (1): which of the self-adjoint extensions of
the operator H;, corresponds to the pure Aharonov-Bohm
operator H,?
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