210 research outputs found

    Time-resolved imaging of non-diffusive carrier transport in long-lifetime halide perovskite thin films

    Full text link
    Owing to their exceptional semiconducting properties, hybrid inorganic-organic perovskites show great promise as photovoltaic absorbers. In these materials, long-range diffusion of charge carriers allows for most of the photogenerated carriers to contribute to the photovoltaic efficiency. Here, time-resolved photoluminescence (PL) microscopy is used to directly probe ambipolar carrier diffusion and recombination kinetics in hybrid perovskites. This technique is applied to thin films of methylammonium lead tri-iodide MAPbI3_3 obtained with two different fabrication routes, methylammonium lead tribromide (MAPbBr3_3), and an alloy of formamidinium lead tri-iodide (FAPbI3_3) and methylammonium lead bromide FA0.85_{0.85}MA0.15_{0.15}Pb(I0.85_{0.85}Br_0.15{0.15})3_3. Average diffusion coefficients in the films leading to the highest device efficiencies and longest lifetimes, i.e., in FA0.85_{0.85}MA0.15_{0.15}Pb(I0.85_{0.85}Br0.15_{0.15})3_3 and acetonitrile-processed MAPbI3_3, are found to be several orders of magnitude lower than in the other films. Further examination of the time-dependence shows strong evidence for non-diffusive transport. In particular, acetonitrile-processed MAPbI3_3 shows distinct diffusion regimes on short and long timescales with an effective diffusion constant varying over 2 orders of magnitude. Our results also highlight the fact that increases in carrier lifetime in this class of materials are not necessarily concomitant with increased diffusion lengths and that the PL quantum efficiency under solar cell operating conditions is a greater indication of material, and ultimately device, quality

    (3E,5E)-1-Benzyl-3,5-bis­(2-fluoro­benzyl­idene)piperidin-4-one

    Get PDF
    The inversion-related mol­ecules of the title compound, C26H21F2NO, associate into closed dimeric subunits via co-operative C—H⋯π inter­actions. Two non-classical C—H⋯O and one C—H⋯N intra­molecular hydrogen bonds are also found in the crystal structure. The piperidin-4-one ring adopts a sofa conforamtion with the 1-benzyl group in the equatorial position, and the equiplanar fluoro­phenyl substituents in the 3- and 5-positions stretched out on either side. The 1-benzyl group is disposed towards the substituent in the 6th position of the piperidin-4-one ring. The 3,5-diene units possess E configurations

    (3E,5E)-3,5-Bis(4-allyl­oxybenzyl­idene)-1-benzyl­piperidin-4-one

    Get PDF
    In the title compound C32H31NO3, the all­yloxy groups on either side of the piperidin-4-one ring are conformationally disordered. The contribution of major and minor components of the allyloxy group at the 3rd position of the ring are 0.576 (4) and 0.424 (4), respectively, and those at the 5th position are 0.885 (3) and 0.115 (3), respectively. The six-membered piperidin-4-one ring adopts a sofa conformation with the benzyl group occupying an equatorial position and the olefinic double bonds possessing an E configuration. Flanking phenyl substituents are stretched out on either side of the six-membered ring. π–π inter­actions with a centroid–centroid distance of 3.885 (1) Å give rise to mol­ecular dimers and short C—H⋯π contacts lead to chains along the c axis

    (3E,5E)-1-Benzyl-3,5-dibenzyl­idenepiperidin-4-one

    Get PDF
    In the title compound, C26H23NO, C—H⋯O hydrogen bonds generate a ribbon structure along the a axis. These ribbons further assemble into a one-dimensional sheet parallel to the ac plane via C—H⋯π inter­actions. The piperidin-4-one ring adopts a sofa conformation with the 1-benzyl group in the equatorial position, and the 3- and 5-phenyl substituents stretched out on either side. The benzyl­idene units adopt E configurations and the 1-benzyl group is disposed towards the 3- substituent of the piperidin-4-one ring

    The DLV System for Knowledge Representation and Reasoning

    Full text link
    This paper presents the DLV system, which is widely considered the state-of-the-art implementation of disjunctive logic programming, and addresses several aspects. As for problem solving, we provide a formal definition of its kernel language, function-free disjunctive logic programs (also known as disjunctive datalog), extended by weak constraints, which are a powerful tool to express optimization problems. We then illustrate the usage of DLV as a tool for knowledge representation and reasoning, describing a new declarative programming methodology which allows one to encode complex problems (up to Δ3P\Delta^P_3-complete problems) in a declarative fashion. On the foundational side, we provide a detailed analysis of the computational complexity of the language of DLV, and by deriving new complexity results we chart a complete picture of the complexity of this language and important fragments thereof. Furthermore, we illustrate the general architecture of the DLV system which has been influenced by these results. As for applications, we overview application front-ends which have been developed on top of DLV to solve specific knowledge representation tasks, and we briefly describe the main international projects investigating the potential of the system for industrial exploitation. Finally, we report about thorough experimentation and benchmarking, which has been carried out to assess the efficiency of the system. The experimental results confirm the solidity of DLV and highlight its potential for emerging application areas like knowledge management and information integration.Comment: 56 pages, 9 figures, 6 table

    Chitosan-Graft-Branched Polyethylenimine Copolymers: Influence of Degree of Grafting on Transfection Behavior

    Get PDF
    BACKGROUND: Successful non-viral gene delivery currently requires compromises to achieve useful transfection levels while minimizing toxicity. Despite high molecular weight (MW) branched polyethylenimine (bPEI) is considered the gold standard polymeric transfectant, it suffers from high cytotoxicity. Inversely, its low MW counterpart is less toxic and effective in transfection. Moreover, chitosan is a highly biocompatible and biodegradable polymer but characterized by very low transfection efficiency. In this scenario, a straightforward approach widely exploited to develop effective transfectants relies on the synthesis of chitosan-graft-low MW bPEIs (Chi-g-bPEI(x)) but, despite the vast amount of work that has been done in developing promising polymeric assemblies, the possible influence of the degree of grafting on the overall behavior of copolymers for gene delivery has been largely overlooked. METHODOLOGY/PRINCIPAL FINDINGS: With the aim of providing a comprehensive evaluation of the pivotal role of the degree of grafting in modulating the overall transfection effectiveness of copolymeric vectors, we have synthesized seven Chi-g-bPEI(x) derivatives with a variable amount of bPEI grafts (minimum: 0.6%; maximum: 8.8%). Along the Chi-g-bPEI(x) series, the higher the degree of grafting, the greater the ζ-potential and the cytotoxicity of the resulting polyplexes. Most important, in all cell lines tested the intermediate degree of grafting of 2.7% conferred low cytotoxicity and higher transfection efficiency compared to other Chi-g-bPEI(x) copolymers. We emphasize that, in transfection experiments carried out in primary articular chondrocytes, Chi-g-bPEI(2.7%) was as effective as and less cytotoxic than the gold standard 25 kDa bPEI. CONCLUSIONS/SIGNIFICANCE: This work underlines for the first time the pivotal role of the degree of grafting in modulating the overall transfection effectiveness of Chi-g-bPEI(x) copolymers. Crucially, we have demonstrated that, along the copolymer series, the fine tuning of the degree of grafting directly affected the overall charge of polyplexes and, altogether, had a direct effect on cytotoxicity

    Structural basis for native agonist and synthetic inhibitor recognition by the Pseudomonas aeruginosa quorum sensing regulator PqsR (MvfR)

    Get PDF
    Bacterial populations co-ordinate gene expression collectively through quorum sensing (QS), a cell-to-cell communication mechanism employing diffusible signal molecules. The LysR-type transcriptional regulator (LTTR) protein PqsR (MvfR) is a key component of alkyl-quinolone (AQ)-dependent QS in Pseudomonas aeruginosa. PqsR is activated by 2-alkyl-4-quinolones including the Pseudomonas quinolone signal (PQS; 2-heptyl-3-hydroxy-4(1H)-quinolone), its precursor 2-heptyl-4- hydroxyquinoline (HHQ) and their C9 congeners, 2-nonyl-3-hydroxy-4(1H)-quinolone (C9-PQS) and 2-nonyl-4-hydroxyquinoline (NHQ). These drive the autoinduction of AQ biosynthesis and the up-regulation of key virulence determinants as a function of bacterial population density. Consequently, PqsR constitutes a potential target for novel antibacterial agents which attenuate infection through the blockade of virulence. Here we present the crystal structures of the PqsR co-inducer binding domain (CBD) and a complex with the native agonist NHQ. We show that the structure of the PqsR CBD has an unusually large ligand-binding pocket in which a native AQ agonist is stabilized entirely by hydrophobic interactions. Through a ligand-based design strategy we synthesized and evaluated a series of 50 AQ and novel quinazolinone (QZN) analogues and measured the impact on AQ biosynthesis, virulence gene expression and biofilm development. The simple exchange of two isosteres (OH for NH2) switches a QZN agonist to an antagonist with a concomitant impact on the induction of bacterial virulence factor production. We also determined the complex crystal structure of a QZN antagonist bound to PqsR revealing a similar orientation in the ligand binding pocket to the native agonist NHQ. This structure represents the first description of an LTTR-antagonist complex. Overall these studies present novel insights into LTTR ligand binding and ligand-based drug design and provide a chemical scaffold for further anti-P. aeruginosa virulence drug development by targeting the AQ receptor PqsR
    corecore