18,880 research outputs found
Emergent Nesting of the Fermi Surface from Local-Moment Description of Iron-Pnictide High-Tc Superconductors
We uncover the low-energy spectrum of a t-J model for electrons on a square
lattice of spin-1 iron atoms with 3dxz and 3dyz orbital character by applying
Schwinger-boson-slave-fermion mean-field theory and by exact diagonalization of
one hole roaming over a 4 x 4 x 2 lattice. Hopping matrix elements are set to
produce hole bands centered at zero two-dimensional (2D) momentum in the
free-electron limit. Holes can propagate coherently in the t-J model below a
threshold Hund coupling when long-range antiferromagnetic order across the d+ =
3d(x+iy)z and d- = 3d(x-iy)z orbitals is established by magnetic frustration
that is off-diagonal in the orbital indices. This leads to two hole-pocket
Fermi surfaces centered at zero 2D momentum. Proximity to a commensurate
spin-density wave (cSDW) that exists above the threshold Hund coupling results
in emergent Fermi surface pockets about cSDW momenta at a quantum critical
point (QCP). This motivates the introduction of a new Gutzwiller wavefunction
for a cSDW metal state. Study of the spin-fluctuation spectrum at cSDW momenta
indicates that the dispersion of the nested band of one-particle states that
emerges is electron-type. Increasing Hund coupling past the QCP can push the
hole-pocket Fermi surfaces centered at zero 2D momentum below the Fermi energy
level, in agreement with recent determinations of the electronic structure of
mono-layer iron-selenide superconductors.Comment: 41 pages, 12 figures, published versio
Axial dependence of optical weak measurements in the critical region
The interference between optical beams of different polarizations plays a
fundamental role in reproducing the optical analog of the electron spin weak
measurement. The extraordinary point in optical weak measurements is
represented by the possibility to estimate with great accuracy the
Goos-Haenchen (GH) shift by measuring the distance between the peak of the
outgoing beams for two opposite rotation angles of the polarizers located
before and after the dielectric block. Starting from the numerical calculation
of the GH shift, which clearly shows a frequency crossover for incidence near
to the critical angle, we present a detailed study of the interference between
s and p polarized waves in the critical region. This allows to determine in
which conditions it is possible to avoid axial deformations and reproduce the
GH curves. In view of a possible experimental implementation, we give the
expected weak measurement curves for Gaussian lasers of different beam waist
sizes propagating through borosilicate (BK7) and fused silica dielectric
blocks.Comment: 16 pages, 7 figure
Nanoscopic processes of Current Induced Switching in thin tunnel junctions
In magnetic nanostructures one usually uses a magnetic field to commute
between two resistance (R) states. A less common but technologically more
interesting alternative to achieve R-switching is to use an electrical current,
preferably of low intensity. Such Current Induced Switching (CIS) was recently
observed in thin magnetic tunnel junctions, and attributed to electromigration
of atoms into/out of the insulator. Here we study the Current Induced
Switching, electrical resistance, and magnetoresistance of thin
MnIr/CoFe/AlO/CoFe tunnel junctions. The CIS effect at room temperature
amounts to 6.9% R-change between the high and low states and is attributed to
nanostructural rearrangements of metallic ions in the electrode/barrier
interfaces. After switching to the low R-state some electro-migrated ions
return to their initial sites through two different energy channels. A low
(high) energy barrier of 0.13 eV (0.85 eV) was estimated. Ionic
electromigration then occurs through two microscopic processes associated with
different types of ions sites/defects. Measurements under an external magnetic
field showed an additional intermediate R-state due to the simultaneous
conjugation of the MR (magnetic) and CIS (structural) effects.Comment: 6 pages, 4 figure
Vitamin K as a diet supplement with impact in human health: current evidence in age-related idseases
Vitamin K health benefits have been recently widely shown to extend beyond blood homeostasis and implicated in chronic low-grade inflammatory diseases such as cardiovascular disease, osteoarthritis, dementia, cognitive impairment, mobility disability, and frailty. Novel and more efficient nutritional and therapeutic options are urgently needed to lower the burden and the associated health care costs of these age-related diseases. Naturally occurring vitamin K comprise the phylloquinone (vitamin K1), and a series of menaquinones broadly designated as vitamin K2 that differ in source, absorption rates, tissue distribution, bioavailability, and target activity. Although vitamin K1 and K2 sources are mainly dietary, consumer preference for diet supplements is growing, especially when derived from marine resources. The aim of this review is to update the reader regarding the specific contribution and effect of each K1 and K2 vitamers in human health, identify potential methods for its sustainable and cost-efficient production, and novel natural sources of vitamin K and formulations to improve absorption and bioavailability. This new information will contribute to foster the use of vitamin K as a health-promoting supplement, which meets the increasing consumer demand. Simultaneously, relevant information on the clinical context and direct health consequences of vitamin K deficiency focusing in aging and age-related diseases will be discussed.info:eu-repo/semantics/publishedVersio
- …