23 research outputs found

    Azithromycin ameliorates sulfur dioxide-induced airway epithelial damage and inflammatory responses

    Get PDF
    Publisher's version (útgefin grein)Background: The airway epithelium (AE) forms the first line of defence against harmful particles and pathogens. Barrier failure of the airway epithelium contributes to exacerbations of a range of lung diseases that are commonly treated with Azithromycin (AZM). In addition to its anti-bacterial function, AZM has immunomodulatory effects which are proposed to contribute to its clinical effectiveness. In vitro studies have shown the AE barrier-enhancing effects of AZM. The aim of this study was to analyze whether AE damage caused by inhalation of sulfur dioxide (SO2) in a murine model could be reduced by pre-treatment with AZM. Methods: The leakiness of the AE barrier was evaluated after SO2 exposure by measuring levels of human serum albumin (HSA) in bronchoalveolar lavage fluid (BALF). Protein composition in BALF was also assessed and lung tissues were evaluated across treatments using histology and gene expression analysis. Results: AZM pre-treatment (2 mg/kg p.o. 5 times/week for 2 weeks) resulted in reduced glutathione-S-transferases in BALF of SO2 injured mice compared to control (without AZM treatment). AZM treated mice had increased intracellular vacuolization including lamellar bodies and a reduction in epithelial shedding after injury in addition to a dampened SO2-induced inflammatory response. Conclusions: Using a mouse model of AE barrier dysfunction we provide evidence for the protective effects of AZM in vivo, possibly through stabilizing the intracellular microenvironment and reducing inflammatory responses. Our data provide insight into the mechanisms contributing to the efficacy of AZM in the treatment of airway diseases.This work was supported by the Icelandic Research Council Technical Fund (Rannís Grant numbers: 186943–0611) and EpiEndo Pharmaceuticals.Peer Reviewe

    Innovative in vitro method to study ventilator induced lung injury.

    Get PDF
    To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked DownloadMechanical ventilation (MV) is a life-saving therapy for critically ill patients, alleviating the work of breathing and supporting adequate gas exchange. However, MV can cause ventilator induced lung injury (VILI) by baro/volu- and atelectrauma, even lead to acute respiratory distress syndrome (ARDS), and substantially augment mortality. There is a need for specific biomarkers and novel research platforms for VILI/ARDS research to study these detrimental disorders and seek ways to avoid or prevent them. Previous in vitro studies on bronchial epithelium, cultured in air-liquid interface (ALI) conditions, have generally utilized static or constant pressure. We have developed a Cyclical Pressure ALI Device (CPAD) that enables cyclical stress on ALI cultured human bronchial cells, with the aim of mimicking the effects of MV. Using CPAD we were able to analyze differentially expressed VILI/ARDS and innate immunity associated genes along with increased expression of associated proteins. CPAD provides an easy and accessible way to analyze functional and phenotypic changes that occur during VILI and may provide a platform for future drug testing.Technology development fund - Icelandic research council University of Iceland Land-spitali, University Hospital, Science fun

    Azithromycin induces epidermal differentiation and multivesicular bodies in airway epithelia.

    Get PDF
    To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked DownloadBACKGROUND: Azithromycin (Azm) is a macrolide recognized for its disease-modifying effects and reduction in exacerbation of chronic airway diseases. It is not clear whether the beneficial effects of Azm are due to its anti-microbial activity or other pharmacological actions. We have shown that Azm affects the integrity of the bronchial epithelial barrier measured by increased transepithelial electrical resistance. To better understand these effects of Azm on bronchial epithelia we have investigated global changes in gene expression. METHODS: VA10 bronchial epithelial cells were treated with Azm and cultivated in air-liquid interface conditions for up to 22 days. RNA was isolated at days 4, 10 and 22 and analyzed using high-throughput RNA sequencing. qPCR and immunostaining were used to confirm key findings from bioinformatic analyses. Detailed assessment of cellular changes was done using microscopy, followed by characterization of the lipidomic profiles of the multivesicular bodies present. RESULTS: Bioinformatic analysis revealed that after 10 days of treatment genes encoding effectors of sterol and cholesterol metabolism were prominent. Interestingly, expression of genes associated with epidermal barrier differentiation, KRT1, CRNN, SPINK5 and DSG1, increased significantly at day 22. Together with immunostaining, these results suggest an epidermal differentiation pattern. We also found that Azm induced the formation of multivesicular and lamellar bodies in two different airway epithelial cell lines. Lipidomic analysis revealed that Azm was entrapped in multivesicular bodies linked to different types of lipids, most notably palmitate and stearate. Furthermore, targeted analysis of lipid species showed accumulation of phosphatidylcholines, as well as ceramide derivatives. CONCLUSIONS: Taken together, we demonstrate how Azm might confer its barrier enhancing effects, via activation of epidermal characteristics and changes to intracellular lipid dynamics. These effects of Azm could explain the unexpected clinical benefit observed during Azm-treatment of patients with various lung diseases affecting barrier function.Icelandic Research Council EpiEndo Pharmaceuticals, Reykjavik, Icelan

    MicroRNA-200c-141 and ∆Np63 are required for breast epithelial differentiation and branching morphogenesis.

    Get PDF
    To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked Files. This article is open access.The epithelial compartment of the breast contains two lineages, the luminal- and the myoepithelial cells. D492 is a breast epithelial cell line with stem cell properties that forms branching epithelial structures in 3D culture with both luminal- and myoepithelial differentiation. We have recently shown that D492 undergo epithelial to mesenchymal transition (EMT) when co-cultured with endothelial cells. This 3D co-culture model allows critical analysis of breast epithelial lineage development and EMT. In this study, we compared the microRNA (miR) expression profiles for D492 and its mesenchymal-derivative D492M. Suppression of the miR-200 family in D492M was among the most profound changes observed. Exogenous expression of miR-200c-141 in D492M reversed the EMT phenotype resulting in gain of luminal but not myoepithelial differentiation. In contrast, forced expression of ∆Np63 in D492M restored the myoepithelial phenotype only. Co-expression of miR-200c-141 and ∆Np63 in D492M restored the branching morphogenesis in 3D culture underlining the requirement for both luminal and myoepithelial elements for obtaining full branching morphogenesis in breast epithelium. Introduction of a miR-200c-141 construct in both D492 and D492M resulted in resistance to endothelial induced EMT. In conclusion, our data suggests that expression of miR-200c-141 and ∆Np63 in D492M can reverse EMT resulting in luminal- and myoepithelial differentiation, respectively, demonstrating the importance of these molecules in epithelial integrity in the human breast.Grants from Landspitali University Hospital Science Fund, University of Iceland Research Fund, Science and Technology Policy Council-Research Fund (Grant No. 120416022), “Göngum saman

    deltaNp63 has a role in maintaining epithelial integrity in airway epithelium.

    Get PDF
    The upper airways are lined with a pseudostratified bronchial epithelium that forms a barrier against unwanted substances in breathing air. The transcription factor p63, which is important for stratification of skin epithelium, has been shown to be expressed in basal cells of the lungs and its ΔN isoform is recognized as a key player in squamous cell lung cancer. However, the role of p63 in formation and maintenance of bronchial epithelia is largely unknown. The objective of the current study was to determine the expression pattern of the ΔN and TA isoforms of p63 and the role of p63 in the development and maintenance of pseudostratified lung epithelium in situ and in culture. We used a human bronchial epithelial cell line with basal cell characteristics (VA10) to model bronchial epithelium in an air-liquid interface culture (ALI) and performed a lentiviral-based silencing of p63 to characterize the functional and phenotypic consequences of p63 loss. We demonstrate that ΔNp63 is the major isoform in the human lung and its expression was exclusively found in the basal cells lining the basement membrane of the bronchial epithelium. Knockdown of p63 affected proliferation and migration of VA10 cells and facilitated cellular senescence. Expression of p63 is critical for epithelial repair as demonstrated by wound healing assays. Importantly, generation of pseudostratified VA10 epithelium in the ALI setup depended on p63 expression and goblet cell differentiation, which can be induced by IL-13 stimulation, was abolished by the p63 knockdown. After knockdown of p63 in primary bronchial epithelial cells they did not proliferate and showed marked senescence. We conclude that these results strongly implicate p63 in the formation and maintenance of differentiated pseudostratified bronchial epithelium

    p63 is necessary for a quick wound healing response.

    No full text
    <p>Wound healing assay shows decreased healing capacity of VA10<sup>p63kd</sup> cells (right) compared to VA10<sup>Scr</sup> cells (left) after 1,3 and 6 hours (a). Images represent results obtained from 4 independent experiments. Graph showing relative wound healing speed between VA10<sup>p63kd</sup> cells and VA10<sup>Scr</sup> cells (b). ***p≤0.001, **p≤0.01, *p≤.0.5.</p

    ΔNp63 is expressed in bronchial basal cells <i>in situ</i> and is a major p63 isoform in basal cells <i>in</i><i>vitro</i>.

    No full text
    <p>ΔNp63 is expressed in basal cells in normal human bronchi (a). VA10 cells cultured in ALI express ΔNp63 at the basolateral side and not on the apical side (b). ΔNp63 shows 167,5 fold expression compared to TAp63 in bronchial basal cell line VA10, as calculated by ΔΔct obtained by qRT-PCR. GAPDH was used as endogenous control. (c). Scale bars 50 µm. ***p≤0.001.</p

    p63 is necessary for IL-13 induced goblet cell differentiation in ALI culture.

    No full text
    <p>A subset of VA10<sup>Scr</sup> differentiates to goblet cells when stimulated with IL-13 (left panel). VA10<sup>p63kd</sup> cells are unable to form goblet cells when stimulated with IL-13 (right panel). Scale bars 50 µm. **p≤0.01.</p

    VA10<sup>p63kd</sup> cells lose survival ability.

    No full text
    <p>VA10<sup>p63kd</sup> (KD) cells enter senescence when cultured for prolonged period in monolayer, as shown with β-galactosidase staining (a). To quantify the senescence the pixel intensity is represented in bars for VA10<sup>Scr</sup> compared to VA10<sup>p63kd</sup>. Scale bars 50 µm. *p≤.0.5.</p
    corecore