2 research outputs found
Concentration Dependence of Dopant Electronic Structure in Bottom-up Graphene Nanoribbons
Bottom-up
fabrication techniques enable atomically precise integration
of dopant atoms into the structure of graphene nanoribbons (GNRs).
Such dopants exhibit perfect alignment within GNRs and behave differently
from bulk semiconductor dopants. The effect of dopant concentration
on the electronic structure of GNRs, however, remains unclear despite
its importance in future electronics applications. Here we use scanning
tunneling microscopy and first-principles calculations to investigate
the electronic structure of bottom-up synthesized <i>N</i> = 7 armchair GNRs featuring varying concentrations of boron dopants.
First-principles calculations of freestanding GNRs predict that the
inclusion of boron atoms into a GNR backbone should induce two sharp
dopant states whose energy splitting varies with dopant concentration.
Scanning tunneling spectroscopy experiments, however, reveal two broad
dopant states with an energy splitting greater than expected. This
anomalous behavior results from an unusual hybridization between the
dopant states and the Au(111) surface, with the dopant–surface
interaction strength dictated by the dopant orbital symmetry
Molecular Self-Assembly in a Poorly Screened Environment: F<sub>4</sub>TCNQ on Graphene/BN
We report a scanning tunneling microscopy and noncontact atomic force microscopy study of close-packed 2D islands of tetrafluoroÂtetracyanoquinodimethane (F<sub>4</sub>TCNQ) molecules at the surface of a graphene layer supported by boron nitride. While F<sub>4</sub>TCNQ molecules are known to form cohesive 3D solids, the intermolecular interactions that are attractive for F<sub>4</sub>TCNQ in 3D are repulsive in 2D. Our experimental observation of cohesive molecular behavior for F<sub>4</sub>TCNQ on graphene is thus unexpected. This self-assembly behavior can be explained by a novel solid formation mechanism that occurs when charged molecules are placed in a poorly screened environment. As negatively charged molecules coalesce, the local work function increases, causing electrons to flow into the coalescing molecular island and increase its cohesive binding energy