16 research outputs found

    Lung, Breast and Colorectal Cancer Incidence by Socioeconomic Status in Spain: A Population-Based Multilevel Study

    Get PDF
    Socioeconomic inequalities in cancer incidence are not well documented in southern Europe. We aim to study the association between socioeconomic status (SES) and colorectal, lung, and breast cancer incidence in Spain. We conducted a multilevel study using data from Spanish populationbased cancer registries, including incident cases diagnosed for the period 2010–2013 in nine Spanish provinces. We used Poisson mixed-effects models, including the census tract as a random intercept, to derive cancer incidence rate ratios by SES, adjusted for age and calendar year. Male adults with the lowest SES, compared to those with the highest SES, showed weak evidence of being at increased risk of lung cancer (risk ratio (RR): 1.18, 95% CI: 0.94–1.46) but showed moderate evidence of being at reduced risk of colorectal cancer (RR: 0.84, 95% CI: 0.74–0.97). Female adults with the lowest SES, compared to those with the highest SES, showed strong evidence of lower breast cancer incidence with 24% decreased risk (RR: 0.76, 95% CI: 0.68–0.85). Among females, we did not find evidence of an association between SES and lung or colorectal cancer. The associations found between SES and cancer incidence in Spain are consistent with those obtained in other European countries.Spanish National Health Institute Carlos III Miguel Servet-I Investigator grant/award, grant number CP17/00206-EU-FEDERInstituto de Salud Carlos III (ISCIII): PI18/01593 and CP17/00206-EU/FEDERAsociación Española Contra el Cáncer (AECC): PROYE20023SÁNCCancer Epidemiological Surveillance Subprogram (VICA) from the CIBER Epidemiologia y Salud Pública (CIBERESP) from the Instituto de Salud Carlos IIILa Caixa Foundatio

    Cancer data quality and harmonization in Europe: the experience of the BENCHISTA Project – international benchmarking of childhood cancer survival by stage

    Get PDF
    IntroductionVariation in stage at diagnosis of childhood cancers (CC) may explain differences in survival rates observed across geographical regions. The BENCHISTA project aims to understand these differences and to encourage the application of the Toronto Staging Guidelines (TG) by Population-Based Cancer Registries (PBCRs) to the most common solid paediatric cancers.MethodsPBCRs within and outside Europe were invited to participate and identify all cases of Neuroblastoma, Wilms Tumour, Medulloblastoma, Ewing Sarcoma, Rhabdomyosarcoma and Osteosarcoma diagnosed in a consecutive three-year period (2014-2017) and apply TG at diagnosis. Other non-stage prognostic factors, treatment, progression/recurrence, and cause of death information were collected as optional variables. A minimum of three-year follow-up was required. To standardise TG application by PBCRs, on-line workshops led by six tumour-specific clinical experts were held. To understand the role of data availability and quality, a survey focused on data collection/sharing processes and a quality assurance exercise were generated. To support data harmonization and query resolution a dedicated email and a question-and-answers bank were created.Results67 PBCRs from 28 countries participated and provided a maximally de-personalized, patient-level dataset. For 26 PBCRs, data format and ethical approval obtained by the two sponsoring institutions (UCL and INT) was sufficient for data sharing. 41 participating PBCRs required a Data Transfer Agreement (DTA) to comply with data protection regulations. Due to heterogeneity found in legal aspects, 18 months were spent on finalizing the DTA. The data collection survey was answered by 68 respondents from 63 PBCRs; 44% of them confirmed the ability to re-consult a clinician in cases where stage ascertainment was difficult/uncertain. Of the total participating PBCRs, 75% completed the staging quality assurance exercise, with a median correct answer proportion of 92% [range: 70% (rhabdomyosarcoma) to 100% (Wilms tumour)].ConclusionDifferences in interpretation and processes required to harmonize general data protection regulations across countries were encountered causing delays in data transfer. Despite challenges, the BENCHISTA Project has established a large collaboration between PBCRs and clinicians to collect detailed and standardised TG at a population-level enhancing the understanding of the reasons for variation in overall survival rates for CC, stimulate research and improve national/regional child health plans

    Changing geographical patterns and trends in cancer incidence in children and adolescents in Europe, 1991–2010 (Automated Childhood Cancer Information System): a population-based study

    Get PDF
    Background: A deceleration in the increase in cancer incidence in children and adolescents has been reported in several national and regional studies in Europe. Based on a large database representing 1·3 billion person-years over the period 1991–2010, we provide a consolidated report on cancer incidence trends at ages 0–19 years. Methods: We invited all population-based cancer registries operating in European countries to participate in this population-based registry study. We requested a listing of individual records of cancer cases, including sex, age, date of birth, date of cancer diagnosis, tumour sequence number, primary site, morphology, behaviour, and the most valid basis of diagnosis. We also requested population counts in each calendar year by sex and age for the registration area, from official national sources, and specific information about the covered area and registration practices. An eligible registry could become a contributor if it provided quality data for all complete calendar years in the period 1991–2010. Incidence rates and the average annual percentage change with 95% CIs were reported for all cancers and major diagnostic groups, by region and overall, separately for children (age 0–14 years) and adolescents (age 15–19 years). We examined and quantified the stability of the trends with joinpoint analyses. Findings: For the years 1991–2010, 53 registries in 19 countries contributed a total of 180 335 unique cases. We excluded 15 162 (8·4%) of 180 335 cases due to differing practices of registration, and considered the quality indicators for the 165 173 cases included to be satisfactory. The average annual age-standardised incidence was 137·5 (95% CI 136·7–138·3) per million person-years and incidence increased significantly by 0·54% (0·44–0·65) per year in children (age 0–14 years) with no change in trend. In adolescents, the combined European incidence was 176·2 (174·4–178·0) per million person-years based on all 35 138 eligible cases and increased significantly by 0·96% (0·73–1·19) per year, although recent changes in rates among adolescents suggest a deceleration in this increasing trend. We observed temporal variations in trends by age group, geographical region, and diagnostic group. The combined age-standardised incidence of leukaemia based on 48 458 cases in children was 46·9 (46·5–47·3) per million person-years and increased significantly by 0·66% (0·48–0·84) per year. The average overall incidence of leukaemia in adolescents was 23·6 (22·9–24·3) per million person-years, based on 4702 cases, and the average annual change was 0·93% (0·49–1·37). We also observed increasing incidence of lymphoma in adolescents (average annual change 1·04% [0·65–1·44], malignant CNS tumours in children (average annual change 0·49% [0·20–0·77]), and other tumours in both children (average annual change 0·56 [0·40–0·72]) and adolescents (average annual change 1·17 [0·82–1·53]). Interpretation: Improvements in the diagnosis and registration of cancers over time could partly explain the observed increase in incidence, although some changes in underlying putative risk factors cannot be excluded. Cancer incidence trends in this young population require continued monitoring at an international level. Funding: Federal Ministry of Health of the Federal German Government, the European Union's Seventh Framework Programme, and International Agency for Research on Cancer

    Incidence and survival of lymphoid neoplasms in Spain, 2002-2013: A population-based study from the Spanish Network of Cancer Registries (REDECAN).

    No full text
    The aim of this study was to describe incidence, incidence trends and survival patterns of lymphoid neoplasms (LNs) and its subtypes in Spain in the period 2002-2013 using data from the Spanish Network of Cancer Registries (REDECAN). Data were extracted from 13 Spanish population-based cancer registries. LNs incident cases were codified using the International Classification of Diseases for Oncology, third edition (ICD-O-3) and grouped according to the WHO 2008 classification. Age-standardized incidence rates to the 2013 European standard population (ASIRe) were obtained. Poisson regression models were used to analyze trends in incidence rates and estimate the annual percentage change (APC) for each subtype. The number of cases in Spain for 2023 was estimated by applying the estimated age-specific rates for the year 2023 to the 2023 Spanish population. Observed survival (OS) was estimated by the Kaplan-Meier method and net survival (NS) by the Pohar-Perme method. Sex- and age-specific estimates of 5-year NS were calculated, as well as its changes according to two periods of diagnosis (2002-2007 and 2008-2013). LNs accounted for 69% (n=39,156) of all hematological malignancies (n=56,751) diagnosed during the period of study. Median age at diagnosis was 67 years (interquartile range (IQR) = 52-77). The overall ASIRe was 34.23 (95% confidence interval (CI): 33.89, 34.57) and showed a marked male predominance in almost all subtypes (global sex ratio = 1.45). During the study period, incidence trends of LNs remained stable (APC: 0.3; 95% CI: -0.1, 0.6), nevertheless some subtypes showed statistically significant variations, such as LNs NOS category (APC: -5.6; 95% CI: -6.8, -4.3). Around 17,926 new cases of LNs will be diagnosed in 2023 in Spain. Survival rates differed considerably across age-groups, while they were similar between men and women. Five- year NS was 62.81% (95% CI: 62.1, 63.52) for all LNs, and varied widely across LNs subtypes, ranging from 39.21% to 90.25%. NS for all LNs improved from the first period of diagnosis to the second one, being 61.57% (95% CI: 60.56, 62.61) in 2002-2007 and 64.17% (95% CI: 63.29, 65.07) in 2008-2013. This study presents the first complete and extensive population-based analysis of LNs incidence and survival in Spain. These population-based data provide relevant information to better understand the epidemiology of LNs in Southern Europe and it features some useful points for public health authorities and clinicians. However, additional improvements regarding the registration of these hematological neoplasms can be implemented

    Proportion and stage distribution of screen-detected and non-screen-detected colorectal cancer in nine European countries: an international, population-based study

    No full text
    Background: The effects of recently implemented colorectal cancer screening programmes in Europe on colorectal cancer mortality will take several years to be fully known. We aimed to analyse the characteristics and parameters of screening programmes, proportions of colorectal cancers detected through screening, and stage distribution in screen-detected and non-screen-detected colorectal cancers to provide a timely assessment of the potential effects of screening programmes in several European countries. Methods: We conducted this population-based study in nine European countries for which data on mode of detection were available (Belgium, Denmark, England, France, Italy, Ireland, the Netherlands, Slovenia, and Spain). Data from 16 population-based cancer registries were included. Patients were included if they were diagnosed with colorectal cancer from the year that organised colorectal cancer screening programmes were implemented in each country until the latest year with available data at the time of analysis, and if their age at diagnosis fell within the age groups targeted by the programmes. Data collected included sex, age at diagnosis, date of diagnosis, topography, morphology, clinical and pathological TNM information based on the edition in place at time of diagnosis, and mode of detection (ie, screen detected or non-screen detected). If stage information was not available, patients were not included in stage-specific analyses. The primary outcome was proportion and stage distribution of screen-detected versus non-screen detected colorectal cancers. Findings: 228 667 colorectal cancer cases were included in the analyses. Proportions of screen-detected cancers varied widely across countries and regions. The highest proportions (40–60%) were found in Slovenia and the Basque Country in Spain, where FIT-based programmes were fully rolled out, and participation rates were higher than 50%. A similar proportion of screen-detected cancers was also found for the Netherlands in 2015, where participation was over 70%, even though the programme had not yet been fully rolled out to all age groups. In most other countries and regions, proportions of screen-detected cancers were below 30%. Compared with non-screen-detected cancers, screen-detected cancers were much more often found in the distal colon (range 34·5–51·1% screen detected vs 26·4–35·7% non-screen detected) and less often in the proximal colon (19·5–29·9% screen detected vs 24·9–32·8% non-screen detected) p≤0·02 for each country, more often at stage I (35·7–52·7% screen detected vs 13·2–24·9% non-screen detected), and less often at stage IV (5·8–12·5% screen detected vs 22·5–31·9% non-screen detected) p<0·0001 for each country. Interpretation: The proportion of colorectal cancer cases detected by screening varied widely between countries. However, in all countries, screen-detected cancers had a more favourable stage distribution than cancers detected otherwise. There is still much need and scope for improving early detection of cancer across all segments of the colorectum, and particularly in the proximal colon and rectum. Funding: Deutsche Krebshilfe

    Overall and stage-specific survival of patients with screen-detected colorectal cancer in European countries: A population-based study in 9 countries

    Get PDF
    Background: An increasing proportion of colorectal cancers (CRCs) are detected through screening due to the availability of organised population-based programmes. We aimed to analyse survival probabilities of patients with screen-detected CRC in European countries. Methods: Data from CRC patients were obtained from 16 population-based cancer registries in nine European countries. We included patients with cancer diagnosed from the year organised CRC screening programmes were introduced until the most recent year with available data at the time of analysis, whose ages at diagnosis fell into the age groups targeted by screening. Patients were followed up with regards to vital status until 2016-2020 across the various countries. Overall and CRC-specific survival were analysed by mode of detection and stage at diagnosis for all countries combined and for each country separately using the Kaplan-Meier method. Findings: We included data from 228 134 patients, of whom 134 597 (aged 60-69 years at diagnosis targeted by screening in all countries) were considered in analyses for all countries combined. 22·3% (38 080/134 597) of patients had cancer detected through screening. Most screen-detected cancers were found at stages I-II (65·6% [12 772/19 469 included in stage-specific analyses]), while the majority of non-screen-detected cancers were found at stages III-IV (56·4% [31 882/56 543 included in stage-specific analyses]). Five-year overall and CRC-specific survival rates for patients with screen-detected cancer were 83·4% (95% CI 82·9-83·9) and 89·2% (88·8-89·7), respectively; for patients with non-screen-detected cancer, they were much lower (57·5% [57·2-57·8] and 65·7% [65·4-66·1], respectively). The favourable survival of patients with screen-detected cancer was also seen within each stage – five-year overall survival rates for patients with screen-detected stage I, II, III, and IV cancers were 92.4% (95% CI 91·6-93·1), 87·9% (86·6-89·1), 80·7% (79·3-82·0), and 32·3 (29·4-35·2), respectively. These patterns were also consistently seen for each individual country. Interpretation: Patients with cancer diagnosed at screening have a very favourable prognosis. In the rare case of detection of advanced stage cancer, survival probabilities are still much higher than those commonly reported for all patients regardless of mode of detection. Although these results cannot be taken to quantify screening effects, they provide useful and encouraging information for patients with screen-detected CRC and their physicians. Funding: This study was supported in part by grants from the German Federal Ministry of Education and Research and the German Cancer Aid

    Burden and centralised treatment in Europe of rare tumours: results of RARECAREnet - a population-based study

    Get PDF
    Background Rare cancers pose challenges for diagnosis, treatments, and clinical decision making. Information about rare cancers is scant. The RARECARE project defined rare cancers as those with an annual incidence of less than six per 100 000 people in European Union (EU). We updated the estimates of the burden of rare cancers in Europe, their time trends in incidence and survival, and provide information about centralisation of treatments in seven European countries. Methods We analysed data from 94 cancer registries for more than 2 million rare cancer diagnoses, to estimate European incidence and survival in 2000–07 and the corresponding time trends during 1995–2007. Incidence was calculated as the number of new cases divided by the corresponding total person-years in the population. 5-year relative survival was calculated by the Ederer-2 method. Seven registries (Belgium, Bulgaria, Finland, Ireland, the Netherlands, Slovenia, and the Navarra region in Spain) provided additional data for hospitals treating about 220 000 cases diagnosed in 2000–07. We also calculated hospital volume admission as the number of treatments provided by each hospital rare cancer group sharing the same referral pattern. Findings Rare cancers accounted for 24% of all cancers diagnosed in the EU during 2000–07. The overall incidence rose annually by 0.5% (99·8% CI 0·3–0·8). 5-year relative survival for all rare cancers was 48·5% (95% CI 48·4 to 48·6), compared with 63·4% (95% CI 63·3 to 63·4) for all common cancers. 5-year relative survival increased (overall 2·9%, 95% CI 2·7 to 3·2), from 1999–2001 to 2007–09, and for most rare cancers, with the largest increases for haematological tumours and sarcomas. The amount of centralisation of rare cancer treatment varied widely between cancers and between countries. The Netherlands and Slovenia had the highest treatment volumes. Interpretation Our study benefits from the largest pool of population-based registries to estimate incidence and survival of about 200 rare cancers. Incidence trends can be explained by changes in known risk factors, improved diagnosis, and registration problems. Survival could be improved by early diagnosis, new treatments, and improved case management. The centralisation of treatment could be improved in the seven European countries we studied. Funding The European Commission (Chafea)

    Colorectal cancer incidence, mortality, and stage distribution in European countries in the colorectal cancer screening era:an international population-based study

    No full text
    Background: Colorectal cancer screening programmes and uptake vary substantially across Europe. We aimed to compare changes over time in colorectal cancer incidence, mortality, and stage distribution in relation to colorectal cancer screening implementation in European countries. Methods: Data from nearly 3·1 million patients with colorectal cancer diagnosed from 2000 onwards (up to 2016 for most countries) were obtained from 21 European countries, and were used to analyse changes over time in age-standardised colorectal cancer incidence and stage distribution. The WHO mortality database was used to analyse changes over time in age-standardised colorectal cancer mortality over the same period for the 16 countries with nationwide data. Incidence rates were calculated for all sites of the colon and rectum combined, as well as the subsites proximal colon, distal colon, and rectum. Average annual percentage changes (AAPCs) in incidence and mortality were estimated and relevant patterns were descriptively analysed. Findings: In countries with long-standing programmes of screening colonoscopy and faecal tests (ie, Austria, the Czech Republic, and Germany), colorectal cancer incidence decreased substantially over time, with AAPCs ranging from −2·5% (95% CI −2·8 to −2·2) to −1·6% (−2·0 to −1·2) in men and from −2·4% (−2·7 to −2·1) to −1·3% (−1·7 to −0·9) in women. In countries where screening programmes were implemented during the study period, age-standardised colorectal cancer incidence either remained stable or increased up to the year screening was implemented. AAPCs for these countries ranged from −0·2% (95% CI −1·4 to 1·0) to 1·5% (1·1 to 1·8) in men and from −0·5% (−1·7 to 0·6) to 1·2% (0·8 to 1·5) in women. Where high screening coverage and uptake were rapidly achieved (ie, Denmark, the Netherlands, and Slovenia), age-standardised incidence rates initially increased but then subsequently decreased. Conversely, colorectal cancer incidence increased in most countries where no large-scale screening programmes were available (eg, Bulgaria, Estonia, Norway, and Ukraine), with AAPCs ranging from 0·3% (95% CI 0·1 to 0·5) to 1·9% (1·2 to 2·6) in men and from 0·6% (0·4 to 0·8) to 1·1% (0·8 to 1·4) in women. The largest decreases in colorectal cancer mortality were seen in countries with long-standing screening programmes. Interpretation: We observed divergent trends in colorectal cancer incidence, mortality, and stage distribution across European countries, which appear to be largely explained by different levels of colorectal cancer screening implementation. Funding: German Cancer Aid (Deutsche Krebshilfe) and the German Federal Ministry of Education and Research

    Changing geographical patterns and trends in cancer incidence in children and adolescents in Europe, 1991–2010 (Automated Childhood Cancer Information System): a population-based study

    Get PDF
    Background: A deceleration in the increase in cancer incidence in children and adolescents has been reported in several national and regional studies in Europe. Based on a large database representing 1·3 billion person-years over the period 1991–2010, we provide a consolidated report on cancer incidence trends at ages 0–19 years. Methods: We invited all population-based cancer registries operating in European countries to participate in this population-based registry study. We requested a listing of individual records of cancer cases, including sex, age, date of birth, date of cancer diagnosis, tumour sequence number, primary site, morphology, behaviour, and the most valid basis of diagnosis. We also requested population counts in each calendar year by sex and age for the registration area, from official national sources, and specific information about the covered area and registration practices. An eligible registry could become a contributor if it provided quality data for all complete calendar years in the period 1991–2010. Incidence rates and the average annual percentage change with 95% CIs were reported for all cancers and major diagnostic groups, by region and overall, separately for children (age 0–14 years) and adolescents (age 15–19 years). We examined and quantified the stability of the trends with joinpoint analyses. Findings: For the years 1991–2010, 53 registries in 19 countries contributed a total of 180 335 unique cases. We excluded 15 162 (8·4%) of 180 335 cases due to differing practices of registration, and considered the quality indicators for the 165 173 cases included to be satisfactory. The average annual age-standardised incidence was 137·5 (95% CI 136·7–138·3) per million person-years and incidence increased significantly by 0·54% (0·44–0·65) per year in children (age 0–14 years) with no change in trend. In adolescents, the combined European incidence was 176·2 (174·4–178·0) per million person-years based on all 35 138 eligible cases and increased significantly by 0·96% (0·73–1·19) per year, although recent changes in rates among adolescents suggest a deceleration in this increasing trend. We observed temporal variations in trends by age group, geographical region, and diagnostic group. The combined age-standardised incidence of leukaemia based on 48 458 cases in children was 46·9 (46·5–47·3) per million person-years and increased significantly by 0·66% (0·48–0·84) per year. The average overall incidence of leukaemia in adolescents was 23·6 (22·9–24·3) per million person-years, based on 4702 cases, and the average annual change was 0·93% (0·49–1·37). We also observed increasing incidence of lymphoma in adolescents (average annual change 1·04% [0·65–1·44], malignant CNS tumours in children (average annual change 0·49% [0·20–0·77]), and other tumours in both children (average annual change 0·56 [0·40–0·72]) and adolescents (average annual change 1·17 [0·82–1·53]). Interpretation: Improvements in the diagnosis and registration of cancers over time could partly explain the observed increase in incidence, although some changes in underlying putative risk factors cannot be excluded. Cancer incidence trends in this young population require continued monitoring at an international level. Funding: Federal Ministry of Health of the Federal German Government, the European Union's Seventh Framework Programme, and International Agency for Research on Cancer

    Epidemiology of rare cancers and inequalities in oncologic outcomes

    No full text
    Rare cancers epidemiology is better known compared to the other rare diseases. Thanks to the long history of the European population-based cancer registries and to the EUROCARE huge database, the burden of rare cancers has been estimated the European (EU28) population. A considerable fraction of all cancers is represented by rare cancers (24%). They are a heterogeneous group of diseases, but they share similar problems: uncertainty of diagnosis, lack of therapies, poor research opportunities, difficulties in clinical trials, lack of expertise and of centres of reference. This paper analyses the major epidemiological indicators of frequency (incidence and prevalence) and outcome (5-year survival) of all rare cancers combined and of selected rare cancers that will be in depth treated in this monographic issue. Source of the results is the RARECAREnet search tool, a database publicly available. Disparities both in incidence and survival, and consequently in prevalence of rare cancers were reported across European countries. Major differences were shown in outcome: 5-year relative survival for all rare cancers together, adjusted by age and case-mix, varied from 55% or more (Italy, Germany, Belgium and Iceland) and less than 40% (Bulgaria, Lithuania and Slovakia). Similarly, for all the analyzed rare cancers, a large survival gap was observed between the Eastern and the Nordic and Central European regions. Dramatic geographical variations were assessed for curable cancers like testicular and non epithelial ovarian cancers. Geographical difference in the annual age-adjusted incidence rates for all rare cancers together varied between &gt;140 per 100,000 (Italy, Scotland, France, Germany, and Switzerland) and &lt;100 (Finland, Portugal, Malta, and Poland). Prevalence, the major indicator of public health resources needs, was about 7–8 times larger than incidence. Most of rare cancers require complex surgical treatment, thus a multidisciplinary approach is essential and treatment should be provided in centres of expertise and/or in networks including expert centres. Networking is the most appropriate answer to the issues pertaining to rare cancers. Actually, in Europe, an opportunity to improve outcome and reduce disparities is provided by the creation of the European Reference Networks for rare diseases (ERNs). The Joint Action of rare cancers (JARC) is a major European initiative aimed to support the mission of the ERNs. The role of population based cancer registries still remains crucial to describe rare cancers management and outcome in the real word and to evaluate progresses made at the country and at the European level
    corecore