8 research outputs found

    Uso de catecolamina para la diferenciación de células madre a cardiomiocitos.

    Get PDF
    Uso de catecolamina para la diferenciación de células madre a cardiomiocitos. La presente invención se refiere al uso de catecolamina para la diferenciación de células madre a cardiomiocitos y su maduración así como un método para la obtención y maduración de estas células cardíacas. Además, la catecolamina puede usarse para la preparación de un medicamento destinado al tratamiento de un daño cardíaco.Peer reviewedConsejo Superior de Investigaciones Científicas (España), Universidad de Extremadura, Universidad de JaénB1 Patente sin examen previ

    Novel PITX2 Homeodomain-Contained Mutations from ATRIAL Fibrillation Patients Deteriorate Calcium Homeostasis

    Get PDF
    Atrial fibrillation (AF) is the most common cardiac arrhythmia in the human population, with an estimated incidence of 1¿2% in young adults but increasing to more than 10% in 80+ years patients. Pituitary Homeobox 2, Paired Like Homeodomain 2 (PITX2c) loss-of-function in mice revealed that this homeodomain (HD)-containing transcription factor plays a pivotal role in atrial electrophysiology and calcium homeostasis and point to PITX2 as a candidate gene for AF. To address this issue, we recruited 31 AF patients for genetic analyses of both the known risk alleles and PITX2c open reading frame (ORF) re-sequencing. We found two-point mutations in the homedomain of PITX2 and three other variants in the 5¿untranslated region. A 65 years old male patient without 4q25 risk variants but with recurrent AF displayed two distinct HD-mutations, NM_000325.5:c.309G>C (Gln103His) and NM_000325.5:c.370G>A (Glu124Lys), which both resulted in a change within a highly conserved amino acid position. To address the functional impact of the PITX2 HD mutations, we generated plasmid constructs with mutated version of each nucleotide variant (MD4 and MD5, respectively) as well as a dominant negative control construct in which the PITX2 HD was lacking (DN). Functional analyses demonstrated PITX2c MD4 and PITX2c MD5 decreased Nppa-luciferase transactivation by 50% and 40%, respectively, similar to the PITX2c DN (50%), while Shox2 promoter repression was also impaired. Co-transactivation with other cardiac-enriched co-factors, such as Gata4 and Nkx2.5, was similarly impaired, further supporting the pivotal role of these mutations for correct PITX2c function. Furthermore, when expressed in HL1 cardiomyocyte cultures, the PITX2 mutants impaired endogenous expression of calcium regulatory proteins and induced alterations in sarcoplasmic reticulum (SR) calcium accumulation. This favored alternating and irregular calcium transient amplitudes, causing deterioration of the beat-to-beat stability upon elevation of the stimulation frequency. Overall this data demonstrate that these novel PITX2c HD-mutations might be causative of atrial fibrillation in the carrier.This work was supported by grants from The Spanish Ministry of Science Innovation and Universities [SAF2017-88019-C3-1-R] to L.H.-M. V.J.-S. was employed by CIBERCV [RD12/0042/0002] grant. Work was also supported by a PhD scholarship [FPU18/01250] to S.C., and partially funded by grants from Generalitat de Catalunya [SGR2017-1769] and Fundació Marato TV3 [20152030] to L.H.-M., a translational CNIC grant [2009/08] to D.F., R.C. and L.H.-M. and a grant-in-aid from the Junta de Andalucia Regional Council to D.F. and A.A. [CTS-446]

    The 4q25 variant rs13143308T links risk of atrial fibrillation to defective calcium homeostasis

    Get PDF
    Aims: Single nucleotide polymorphisms on chromosome 4q25 have been associated with risk of atrial fibrillation (AF) but the exiguous knowledge of the mechanistic links between these risk variants and underlying electrophysiological alterations hampers their clinical utility. Here, we here tested the hypothesis that 4q25 risk variants cause alterations in the intracellular calcium homeostasis that predispose to spontaneous electrical activity. Methods and results: Western blotting, confocal calcium imaging, and patch-clamp techniques were used to identify mechanisms linking the 4q25 risk variants rs2200733T and rs13143308T to defects in the calcium homeostasis in human atrial myocytes. Our findings revealed that the rs13143308T variant was more frequent in patients with AF and that myocytes from carriers of this variant had a significantly higher density of calcium sparks (14.1±4.5 vs. 3.1±1.3 events/min, p¿=¿0.02), frequency of transient inward (ITI) currents (1.33±0.24 vs. 0.26±0.09 events/min, p¿<¿0.001) and incidence of spontaneous membrane depolarizations (1.22±0.26 vs. 0.56±0.17 events/min, p¿=¿0.001) than myocytes from patients with the normal rs13143308G variant. These alterations were linked to higher sarcoplasmic reticulum calcium loading (10.2±1.4 vs. 7.3±0.5amol/pF, p¿=¿0.01), SERCA2 expression (1.37±0.13 fold, p¿=¿0.03) and RyR2 phosphorylation at s2808 (0.67±0.08 vs. 0.47±0.03, p¿=¿0.01) but not at s2814 (0.28±0.14 vs. 0.31±0.14, p¿=¿0.61) in patients carrying the rs13143308T risk variant. Furthermore, the presence of a risk variant or AF independently increased the ITI frequency and the increase in the ITI frequency observed in carriers of the risk variants was exacerbated in those with AF. By contrast, the presence of a risk variant did not affect the amplitude or properties of the L-type calcium current in patients with or without AF. Conclusions: We here identify the 4q25 variant rs13143308T as a genetic risk marker for AF, specifically associated with excessive calcium release and spontaneous electrical activity linked to increased SERCA2 expression and RyR2 phosphorylationThis work was supported by multi-centric grants from Centro Nacional de Investigaciones Cardiovasculares [CNIC-2009-08 to L.H.-M. and D.F.]; a grant from Fundacio´ Marato´ TV3 [2015-20-30 to L.H.-M.]; and grants from the Spanish Ministry of Economy and Competition [SAF2014-58286-C2-1-R to L.H.-M.] and [DPI2013-44584-R to R.B.]; and from the Spanish Ministry of Health and Consume, Instituto de Salud Carlos III, Red de Investigacio´n Cardiovascular [RD12/0042/0002] and CIBERCV to J.C., and from Fondo Europeo de Desarrollo Regional (FEDER)

    Uso de cateolamina para la diferenciación de células madre a cardiomiocitos

    No full text
    [EN] The present invention relates to the use of catecholamine for differentiation of stem cells into cardiomyocytes and their maturation and a method for obtainment and maturation of these cardiac cells. In addition catecholamine may be used for the preparation of a medicament destined for treatment of cardiac damage.[ES] La presente invención relaciona al uso de la catecolamina para la diferenciación de células pluripotenciales en cardiomyocytes y su maduración y un método para la obtención y la maduración de estas células cardíacas. Además la catecolamina puede ser utilizada para la preparación de un medicamento destinada para el tratamiento del daño cardíaco.Peer reviewedConsejo Superior de Investigaciones Científicas (España), Universidad de Jaen, Universidad de ExtremaduraA1 Solicitud de patente con informe sobre el estado de la técnic

    Uso de catecolamina para la diferenciación de células madre a cardiomiocitos

    Get PDF
    [EN] The present invention relates to the use of catecholamine for differentiation of stem cells into cardiomyocytes and their maturation and a method for obtainment and maturation of these cardiac cells. In addition catecholamine may be used for the preparation of a medicament destined for treatment of cardiac damage.[ES] La presente invención se refiere al uso de catecolamina para la diferenciación de células madre a cardiomiocitos y su maduración así como un método para Ia obtención y maduración de estas células cardíacas. Además, la catecolamina puede usarse para Ia preparación de un medicamento destinado al tratamiento de un daño cardíaco.Peer reviewedConsejo Superior de Investigaciones Científicas (CSIC), Universidad de Jaén, Universidad de ExtremaduraA1 Solicitud de patentes con informe sobre el estado de la técnic

    Modulation of myogenic differentiation in a human rhabdomyosarcoma cell line by a new derivative of 5-fluorouracil (QF-3602)

    No full text
    The in vitro study of mechanisms involved in drug-induced maturation has made it possible to use differentiation-based therapy in clinical practice. The goal of this new therapy is the development of specific agents to induce cancer cells to stop proliferating and express characteristics of normal cells. Recently, by structural modifications of 5-fluorouracil (5-FU), we synthesized a new pyrimidine acyclonucleoside-like compound, 1-{[3-(3-chloro-2-hydroxypropoxy)-1-methoxy]propyl}-5-fluorouracil (QF-3602), which showed in rhabdomyosarcoma cells a low toxicity and time-dependent growth inhibition. In this work, we compared the degree of myogenic differentiation of RD rhabdomyosarcoma (RMS) cells after treatment with QF-3602 and 5-FU. Scanning and transmission electron microscopy (SEM and TEM) and immunocytochemical analyses showed that QF-3602 induced the appearance of myofilaments along the myotube-like giant RD cells, an increase in fibronectin and a decrease in vimentin expression. In contrast, only minor changes were observed with 5-FU. Moreover, polymerase chain reaction (PCR) analyses showed that QF-3602 did not induce overexpression of the mdr 1 gene, a resistance mechanism that frequently appears in classical cytotoxic therapy in these tumors. Compounds obtained by structural modifications of 5-FU may be useful in differentiation therapy as a new approach to the treatment of RMS

    Identification of atrial-enriched lncRNA Walras linked to cardiomyocyte cytoarchitecture and atrial fibrillation

    Get PDF
    Atrial fibrillation (AF) is the most prevalent cardiac arrhythmia in humans. Genetic and genomic analyses have recently demonstrated that the homeobox transcription factor Pitx2 plays a fundamental role regulating expression of distinct growth factors, microRNAs and ion channels leading to morphological and molecular alterations that promote the onset of AF. Here we address the plausible contribution of long non-coding (lnc)RNAs within the Pitx2>Wnt>miRNA signaling pathway. In silico analyses of annotated lncRNAs in the vicinity of the Pitx2, Wnt8 and Wnt11 chromosomal loci identified five novel lncRNAs with differential expression during cardiac development. Importantly, three of them, Walaa, Walras, and Wallrd, are evolutionarily conserved in humans and displayed preferential atrial expression during embryogenesis. In addition, Walrad displayed moderate expression during embryogenesis but was more abundant in the right atrium. Walaa, Walras and Wallrd were distinctly regulated by Pitx2, Wnt8, and Wnt11, and Wallrd was severely elevated in conditional atrium-specific Pitx2-deficient mice. Furthermore, pro-arrhythmogenic and pro-hypertrophic substrate administration to primary cardiomyocyte cell cultures consistently modulate expression of these lncRNAs, supporting distinct modulatory roles of the AF cardiovascular risk factors in the regulation of these lncRNAs. Walras affinity pulldown assays revealed its association with distinct cytoplasmic and nuclear proteins previously involved in cardiac pathophysiology, while loss-of-function assays further support a pivotal role of this lncRNA in cytoskeletal organization. We propose that lncRNAs Walaa, Walras and Wallrd, distinctly regulated by Pitx2>Wnt>miRNA signaling and pro-arrhythmogenic and pro-hypertrophic factors, are implicated in atrial arrhythmogenesis, and Walras additionally in cardiomyocyte cytoarchitecture.This work was supported by a grant- in- aid from the Junta de Andalucía Regional Council to DF and AA [CTS- 446] and by a grant from the Ministry of Science, Innovation and Universities for the Spanish Government to AA and DF (BFU2015- 67131P). VL, RM, KA, and MG were supported by the NIA IRP, NI

    miR-195b deficiency impairs cell cycle regulation and reactive oxygen homeostasis in the elderly

    No full text
    Trabajo presentado en el 44º Congreso Nacional de la Sociedad Española de Bioquímica y Biología Molecular SEBBM, celebrado en Málaga (España) del 06 al 09 de septiembre de 2022
    corecore