6 research outputs found

    Pentacyclic Triterpenes from Cecropia telenitida Can Function as Inhibitors of 11β-Hydroxysteroid Dehydrogenase Type 1

    No full text
    Plant extracts from the genus Cecropia have been used by Latin-American traditional medicine to treat metabolic disorders and diabetes. Previous results have shown that roots of Cecropia telenitida contain pentacyclic triterpenes and these molecules display a hypoglycemic effect in an insulin-resistant murine model. The pharmacological target of these molecules, however, remains unknown. Several lines of evidence indicate that pentacyclic triterpenes inhibit the 11β-hydroxysteroid dehydrogenase type 1 enzyme, which highlights the potential use of this type of natural product as phytotherapeutic or botanical dietary supplements. The main goal of the study was the evaluation of the inhibitory effect of Cecropia telenitida molecules on 11β-hydroxysteroid dehydrogenase type 1 enzyme activity. A pre-fractionated chemical library was obtained from the roots of Cecropia telenitida using several automated chromatography separation steps and a homogeneous time resolved fluorescence assay was used for the bio-guided isolation of inhibiting molecules. The screening of a chemical library consisting of 125 chemical purified fractions obtained from Cecropia telenitida roots identified one fraction displaying 82% inhibition of the formation of cortisol by the 11β-hydroxysteroid dehydrogenase type 1 enzyme. Furthermore, a molecule displaying IC50 of 0.95 ± 0.09 µM was isolated from this purified fraction and structurally characterized, which confirms that a pentacyclic triterpene scaffold was responsible for the observed inhibition. Our results support the hypothesis that pentacyclic triterpene molecules from Cecropia telenitida can inhibit 11β-hydroxysteroid dehydrogenase type 1 enzyme activity. These findings highlight the potential ethnopharmacological use of plants from the genus Cecropia for the treatment of metabolic disorders and diabetes

    Biodégradation of cyanide via recombinant cyanide dehydratase from Bacillus pumilus expressed heterologously in Escherichia coli

    No full text
    Despite its high toxicity, cyanide is used in several industrial processes, and as a result, large volumes of cyanide wastewater need to be treated prior to discharge. Enzymatic degradation of industrial cyanide wastewater by cyanide dihydratase, which is capable of converting cyanide to ammonia and formate, is an attractive alternative to conventional chemical methods of cyanide decontamination. However, the main impediment to the use of this enzyme for the biodegradation of cyanide is its intolerance to the alkaline pH at which cyanide waste is kept and its low thermoresistance. In the present study, the catalytic properties of whole Escherichia coli cells overexpressing a cyanide dihydratase gene from Bacillus pumilus were compared to those of the purified enzyme under conditions similar to those found in industrial cyanide wastewater. In addition, the capacity of whole cells to degrade free cyanide in contaminated wastewater resulting from the gold mining process was also determined. The characteristics of intracellular enzyme, relative to purified enzyme, included increased thermostability (>60% activity at 50°C), as well as greater tolerance to heavy metals, and to a lesser extent pH (20% activity remaining at pH 9.0) On the other hand, enzymatic degradation of 70% of free cyanide (initial concentration 528 mM) in the industrial sample was achieved only after dilution. Nevertheless, the increased thermostability observed for intracellular CynD suggest that whole cells of E. coli overexpressing CynD are suited for process that operate at elevated temperatures (50°C), a limitation observed for the purified enzyme.A pesar de su alta toxicidad, el cianuro es usado en diversos procesos industriales, y como resultado, grandes volúmenes de aguas residuales de cianuro deben ser tratados antes de su descarga. Una alternativa atractiva a los métodos químicos convencionales de descontaminación es la degradación enzimática por la enzima cianuro dihidratasa, la cual es capaz de convertir cianuro en amonio y ácido fórmico. No obstante, la inactivación de esta enzima a pH superior a 8.5 y su poca termoestabilidad han sido el principal impedimento para la implementación exitosa de esta alternativa de biorremediación. En el presente estudio, las propiedades catalíticas de células completas de Escherichia coli que sobre expresan el gen de cianuro dihidratasa de Bacillus pumilus se estudian bajo condiciones similares a las encontradas en aguas residuales industriales de cianuro y los resultados se discuten en comparación con las de la enzima purificada. Además, se determinó la capacidad de las células completas para degradar el cianuro libre en aguas residuales resultantes del proceso de extracción de oro. Las características de la enzima intracelular, relativa a la enzima purificada, incluyeron un incremento en la termoestabilidad (>60% actividad a 50°C), así como mayor tolerancia a metales pesados y en menor medida al pH (20% actividad residual a pH 9.0). Por otra parte, la degradación enzimática del 70% del cianuro libre en la muestra industrial (concentración inicial 528 mM) se logró solo después de la dilución de la muestra. Sin embargo, el incremento en la termoestabilidad observado para CynD intracelular sugiere que las células completas de E. coli que sobre expresan CynD son adecuadas para procesos que operan a temperaturas elevadas (50°C), una limitación observada para la enzima purificada

    Pentacyclic Triterpene Profile and Its Biosynthetic Pathway in <i>Cecropia telenitida</i> as a Prospective Dietary Supplement

    No full text
    Promising research over the past decades has shown that some types of pentacyclic triterpenes (PTs) are associated with the prevention of type 2 diabetes (T2D), especially those found in foods. The most abundant edible sources of PTs are those belonging to the ursane and oleanane scaffold. The principal finding is that Cecropia telenitida contains abundant oleanane and ursane PT types with similar oxygenation patterns to those found in food matrices. We studied the compositional profile of a rich PT fraction (DE16-R) and carried out a viability test over different cell lines. The biosynthetic pathway connected to the isolated PTs in C. telenitida offers a specific medicinal benefit related to the modulation of T2D. This current study suggests that this plant can assemble isobaric, positional isomers or epimeric PT. Ursane or oleanane scaffolds with the same oxygenation pattern are always shared by the PTs in C. telenitida, as demonstrated by its biosynthetic pathway. Local communities have long used this plant in traditional medicine, and humans have consumed ursane and oleanane PTs in fruits since ancient times, two key points we believe useful in considering the medicinal benefits of C. telenitida and explaining how a group of molecules sharing a closely related scaffold can express effectiveness
    corecore