11 research outputs found

    Oral administration of cannabis with lipids leads to high levels of cannabinoids in the intestinal lymphatic system and prominent immunomodulation

    Get PDF
    Cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC) have well documented immunomodulatory effects in vitro, but not following oral administration in humans. Here we show that oral co-administration of cannabinoids with lipids can substantially increase their intestinal lymphatic transport in rats. CBD concentrations in the lymph were 250-fold higher than in plasma, while THC concentrations in the lymph were 100-fold higher than in plasma. Since cannabinoids are currently in clinical use for the treatment of spasticity in multiple sclerosis (MS) patients and to alleviate nausea and vomiting associated with chemotherapy in cancer patients, lymphocytes from those patients were used to assess the immunomodulatory effects of cannabinoids. The levels of cannabinoids recovered in the intestinal lymphatic system, but not in plasma, were substantially above the immunomodulatory threshold in murine and human lymphocytes. CBD showed higher immunosuppressive effects than THC. Moreover, immune cells from MS patients were more susceptible to the immunosuppressive effects of cannabinoids than those from healthy volunteers or cancer patients. Therefore, administering cannabinoids with a high-fat meal or in lipid-based formulations has the potential to be a therapeutic approach to improve the treatment of MS, or indeed other autoimmune disorders. However, intestinal lymphatic transport of cannabinoids in immunocompromised patients requires caution

    Randomized phase 1b trial of MOR103, a human antibody to GM-CSF, in multiple sclerosis

    Get PDF
    Objectives: To determine the safety, pharmacokinetics (PK), and immunogenicity of the recombinant human monoclonal antibody MOR103 to granulocyte-macrophage colony-stimulating factor (GM-CSF) in patients with multiple sclerosis (MS) with clinical or MRI activity.Methods: In this 20-week, randomized, double-blind, placebo-controlled phase 1b dose-escalation trial (registration number NCT01517282), adults with relapsing-remitting MS (RRMS) or secondary progressive MS (SPMS) received an IV infusion of placebo (n = 6) or MOR103 0.5 (n = 8), 1.0 (n = 8), or 2.0 (n = 9) mg/kg every 2 weeks for 10 weeks. Patients had to have ≤10 gadolinium (Gd)-enhancing brain lesions on T1-weighted MRI at baseline. The primary objective was safety.Results: Most treatment-emergent adverse events (TEAEs) were mild to moderate in severity. The most frequent was nasopharyngitis. Between-group differences in TEAE numbers were small. There were no TEAE-related trial discontinuations, infusion-related reactions, or deaths. Nine patients experienced MS exacerbations: 3, 5, 1, and 0 patient(s) in the placebo, 0.5, 1.0, and 2.0 mg/kg groups, respectively. A few T1 Gd-enhancing lesions and/or new or enlarging T2 lesions indicative of inflammation were observed in all treatment groups. No clinically significant changes were observed in other clinical assessments or laboratory safety assessments. No anti-MOR103 antibodies were detected. PK evaluations indicated dose linearity with low/no drug accumulation over time.Conclusions: MOR103 was generally well-tolerated in patients with RRMS or SPMS. No evidence of immunogenicity was found.Classification of evidence: This phase 1b study provides Class I evidence that MOR103 has acceptable tolerability in patients with MS

    Increased IL-2 and Reduced TGF-β Upon T-Cell Stimulation are Associated with GM-CSF Upregulation in Multiple Immune Cell Types in Multiple Sclerosis

    No full text
    Granulocyte macrophage colony stimulating factor (GM-CSF) is a pro-inflammatory cytokine produced by immune cells. Recent evidence suggests that GM-CSF plays an important role in multiple sclerosis (MS) pathogenesis. We investigated the expression and regulation of GM-CSF in different immune cells in MS. We also investigated the differentiation and frequency of GM-CSF-producing Th cells that do not co-express interferon (IFN)-γ or interleukin-17 (IL-17) (Th-GM cells) in MS. We found a significant increase in the percentage of GM-CSF-expressing Th cells, Th1 cells, Th-GM cells, cytotoxic T (Tc) cells, monocytes, natural killer (NK) cells, and B cells in PBMC from MS patients stimulated with T cell stimuli. Stimulated PBMC culture supernatants from MS patients contained significantly higher levels of IL-2, IL-12, IL-1β, and GM-CSF and significantly lower levels of transforming growth factor (TGF-)β. Blocking IL-2 reduced the frequency of Th-GM cells in PBMC from MS patients. The frequency of Th-GM cells differentiated in vitro from naïve CD4+ T cells was significantly higher in MS patients and was further increased in MS with IL-2 stimulation. These findings suggest that all main immune cell subsets produce more GM-CSF in MS after in vitro stimulation, which is associated with defective TGF-β and increased IL-2 and IL-12 production. Th-GM cells are increased in MS. GM-CSF may be a potential therapeutic target in MS

    Granulocyte-macrophage colony-stimulating factor: expression and regulation in human immune responses with relevance to multiple sclerosis

    No full text
    Background: Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF) is a haematopoietic growth factor and a pro-inflammatory cytokine produced by T cells and other immune cells. Recent evidence suggests that GM-CSF plays an important role in multiple sclerosis (MS) pathogenesis. Few recent studies have detected GM-CSF expression by immune cells in MS. In this thesis, the expression of GM-CSF and its receptor by different subtypes of peripheral blood mononuclear cells (PBMCs) in MS was investigated. In addition, GM-CSF regulation was studied in the above-mentioned cells in MS. Finally, GM-CSF neutralization was performed in a phase Ib clinical trial, and some immune-related effects were investigated. Aims: To evaluate the expression of GM-CSF and its receptor by PBMC subsets in MS; to determine the key factors regulating their expression by PBMC subsets in MS; to detect the differentiation of helper T cells producing GM-CSF (Th-GM) in MS patients, and to detect the frequency of immune cells after GM-CSF neutralization in MS in vivo. Subjects and Methods: Patients were mainly untreated relapsing-remitting MS (RRMS) during remission stage, and some were MS patients during a relapse. Healthy controls were also enrolled. All subjects consented to participation in the study before donating peripheral blood. PBMCs were isolated using Ficoll density gradient centrifugation. Flow cytometry and q-PCR were used to detect the expression of GM-CSF and its receptor. Multiplex bead assay was used to quantify GM-CSF with other pro-inflammatory and anti-inflammatory cytokines. Results: The frequency of stimulated GM-CSF-expressing cells (helper T (Th), cytotoxic T (Tc), monocytes, NK cells, and B cells) is significantly higher in the mixed PBMC population of untreated RRMS patients when compared to healthy volunteers. The frequency of Th1 cells expressing GM-CSF was higher in MS patients than healthy controls. The expression of GM-CSF by isolated and stimulated NK cells was not different in MS patients and controls. PBMC culture supernatants were shown to contain significantly higher concentrations of IL-2, IL-12, IL-1β, and GM-CSF in MS patients than controls. Blocking IL-2 and IL-12 significantly reduced GM-CSF expression by Tc, NK, and B cells in MS patients, but not in healthy controls. MS patients during relapse had significantly higher frequency of Th-GM (CD3+CD8-IL-17-IFN-γ-IL-3+GM-CSF+) cells than healthy controls. EBV infected B cells expressed GM-CSF receptor in less frequency than non-infected B cells. In vivo GM-CSF neutralization in MS patients resulted in significant reduction in the frequency of CD8+ T cells and CD4+CD45RA+CD25++ (naïve) Tregs and an increase in CD4+CD35+foxp3 (total) Tregs. Conclusions: Th1 (and Th in general), Tc, monocytes, NK and B cells are all high producers of GM-CSF in MS. IL-2 and IL-12 are the main regulators of GM-CSF expression by Tc, NK, and B cells in MS patients. GM-CSF and its receptor may not be major survival or proliferation factors for EBV infected B cells. The newly identified Th-GM cells were detected in higher frequency in MS patients during relapse, which may suggest a new source for GM-CSF production in MS. The recent safety, tolerability, and immune-related results of GM-CSF neutralization in MS are encouraging. Therefore, GM-CSF is a potential therapeutic target in MS

    Granulocyte-macrophage colony-stimulating factor: expression and regulation in human immune responses with relevance to multiple sclerosis

    No full text
    Background: Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF) is a haematopoietic growth factor and a pro-inflammatory cytokine produced by T cells and other immune cells. Recent evidence suggests that GM-CSF plays an important role in multiple sclerosis (MS) pathogenesis. Few recent studies have detected GM-CSF expression by immune cells in MS. In this thesis, the expression of GM-CSF and its receptor by different subtypes of peripheral blood mononuclear cells (PBMCs) in MS was investigated. In addition, GM-CSF regulation was studied in the above-mentioned cells in MS. Finally, GM-CSF neutralization was performed in a phase Ib clinical trial, and some immune-related effects were investigated. Aims: To evaluate the expression of GM-CSF and its receptor by PBMC subsets in MS; to determine the key factors regulating their expression by PBMC subsets in MS; to detect the differentiation of helper T cells producing GM-CSF (Th-GM) in MS patients, and to detect the frequency of immune cells after GM-CSF neutralization in MS in vivo. Subjects and Methods: Patients were mainly untreated relapsing-remitting MS (RRMS) during remission stage, and some were MS patients during a relapse. Healthy controls were also enrolled. All subjects consented to participation in the study before donating peripheral blood. PBMCs were isolated using Ficoll density gradient centrifugation. Flow cytometry and q-PCR were used to detect the expression of GM-CSF and its receptor. Multiplex bead assay was used to quantify GM-CSF with other pro-inflammatory and anti-inflammatory cytokines. Results: The frequency of stimulated GM-CSF-expressing cells (helper T (Th), cytotoxic T (Tc), monocytes, NK cells, and B cells) is significantly higher in the mixed PBMC population of untreated RRMS patients when compared to healthy volunteers. The frequency of Th1 cells expressing GM-CSF was higher in MS patients than healthy controls. The expression of GM-CSF by isolated and stimulated NK cells was not different in MS patients and controls. PBMC culture supernatants were shown to contain significantly higher concentrations of IL-2, IL-12, IL-1β, and GM-CSF in MS patients than controls. Blocking IL-2 and IL-12 significantly reduced GM-CSF expression by Tc, NK, and B cells in MS patients, but not in healthy controls. MS patients during relapse had significantly higher frequency of Th-GM (CD3+CD8-IL-17-IFN-γ-IL-3+GM-CSF+) cells than healthy controls. EBV infected B cells expressed GM-CSF receptor in less frequency than non-infected B cells. In vivo GM-CSF neutralization in MS patients resulted in significant reduction in the frequency of CD8+ T cells and CD4+CD45RA+CD25++ (naïve) Tregs and an increase in CD4+CD35+foxp3 (total) Tregs. Conclusions: Th1 (and Th in general), Tc, monocytes, NK and B cells are all high producers of GM-CSF in MS. IL-2 and IL-12 are the main regulators of GM-CSF expression by Tc, NK, and B cells in MS patients. GM-CSF and its receptor may not be major survival or proliferation factors for EBV infected B cells. The newly identified Th-GM cells were detected in higher frequency in MS patients during relapse, which may suggest a new source for GM-CSF production in MS. The recent safety, tolerability, and immune-related results of GM-CSF neutralization in MS are encouraging. Therefore, GM-CSF is a potential therapeutic target in MS

    Effect of L-carnitine, Multivitamins and their Combination in the Treatment of Idiopathic Male Infertility

    No full text
    The aim of the present study is to investigate and compare the efficacy of L-carnitine, multivitamins and their combination therapies on semen characteristics in idiopathic male infertility. Idiophathic infertile patients were randomly divided into three groups who had received three different treatment regimens for three months: group A (45 patients) has received 2 grams daily of L-carnitine alone; group B (55 patients) had received the combination of  L-carnitine (2 grams daily) plus one tablet daily of multivitamins (Stresstabs®); and group C (29 patients) had received one tablet daily of multivitamins alone. The study was started on 1/11/2009 and completed on 31/3/2010 and performed at Rizgari Teaching Hospital in Hawler City/Erbil Governorate. Thirty fertile male volunteers were used as a control group as well. Seminal fluid analysis has been done before treatment and then monthly after treatment for three month. The results of the present study clearly demonstrated that the combination therapy of L – carnitine and multivitamins was more efficient than each drug therapy alone and this evidenced by improvement and significant increase in the semen parameters; sperm concentration (72%), sperm count (79%), actively motile sperm (29%), and progressive motile sperm count (125%) when compared to pretreatment values than either L – carnitine or multivitamins therapy alone (53%, 60%, 19% and 84%), (21%, 30%, Non Significant, 34%) respectively.The results demonstrated that the combination therapy of L-carnitine and multivitamins was more efficient and produced more significant improvement in semen characteristic than either therapy alone, and that L-carnitine therapy was more efficient than multivitamins.Improvement in these semen parameters can aid in the treatment of idiopathic male infertility. Key words : L-carnitine, multivitamins, infertility

    Multiple sclerosis-associated IL2RA polymorphism controls GM-CSF production in human TH cells

    Full text link
    Genome-wide association studies implicate dysregulation of immune mechanisms in the pathogenesis of multiple sclerosis (MS). Particularly, polymorphisms in genes involved in T helper (TH) cell differentiation are associated with risk of developing MS. However, the underlying mechanism by which these risk alleles influence MS susceptibility has remained elusive. Initiation of neuroinflammation in animal models of MS has been shown to be dependent on TH cell-derived granulocyte-macrophage colony-stimulating factor (GM-CSF). We here report association of GM-CSF expression by human TH cells with MS disease severity. GM-CSF is strongly induced by interleukin 2 (IL-2). We show that an MS-associated polymorphism in the IL-2 receptor alpha (IL2RA) gene specifically increases the frequency of GM-CSF-producing TH cells. The IL2RA polymorphism regulates IL-2 responsiveness of naive TH cells and their propensity to develop into GM-CSF-producing memory TH cells. These findings mechanistically link an immunologically relevant genetic risk factor with a functional feature of TH cells in MS

    Hydrochemical Denudation and Transient Carbon Dioxide Drawdown in the Highly Glacierized, Shrinking Koxkar Basin, China

    Get PDF
    This study considered solute fluxes and the transient CO2 drawdown process in the highly glacierized Koxkar basin in Central Eurasia, around 70.20% of which is covered by present-day ice. From 27 June to 30 September 2011, the total runoff depth was 671.70 mm, which yielded crustal solute fluxes of 213.65 ± 10.05 kg·(km2·d)−1 that accounted for 53.59% of the total solute flux of the river water. The solute fluxes derived directly from ice meltwater and precipitation were 70.02 ± 4.68 and 16.57 ± 1.13 kg·(km2·d)−1, respectively, which accounted for 17.57% and 4.16% of the total solute flux. The carbonation and hydrolysis of carbonate and feldspar minerals occurred because of the presence of H+, supplied by sulfide oxidation or CO2 drawdown. While the H+ yielded by sulfide oxidation was insufficient for hydrochemical reactions, atmospheric CO2 dissolved in the water generated H+ that drove follow-up reactions. The total transient drawdown of CO2 was 804.83 t C, which generated 39.61% of the total HCO3- and 24.68% of the river water solute. Transient drawdown of CO2 in the glacier region indicated that change of glacial area and volume could influence atmospheric CO2 concentration and be important in the long-term global CO2 cycle

    Oral administration of cannabis with lipids leads to high levels of cannabinoids in the intestinal lymphatic system and prominent immunomodulation

    No full text
    Cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC) have well documented immunomodulatory effects in vitro, but not following oral administration in humans. Here we show that oral co-administration of cannabinoids with lipids can substantially increase their intestinal lymphatic transport in rats. CBD concentrations in the lymph were 250-fold higher than in plasma, while THC concentrations in the lymph were 100-fold higher than in plasma. Since cannabinoids are currently in clinical use for the treatment of spasticity in multiple sclerosis (MS) patients and to alleviate nausea and vomiting associated with chemotherapy in cancer patients, lymphocytes from those patients were used to assess the immunomodulatory effects of cannabinoids. The levels of cannabinoids recovered in the intestinal lymphatic system, but not in plasma, were substantially above the immunomodulatory threshold in murine and human lymphocytes. CBD showed higher immunosuppressive effects than THC. Moreover, immune cells from MS patients were more susceptible to the immunosuppressive effects of cannabinoids than those from healthy volunteers or cancer patients. Therefore, administering cannabinoids with a high-fat meal or in lipid-based formulations has the potential to be a therapeutic approach to improve the treatment of MS, or indeed other autoimmune disorders. However, intestinal lymphatic transport of cannabinoids in immunocompromised patients requires caution
    corecore