79 research outputs found

    Atomic cluster expansion force field based thermal property material design with density functional theory level accuracy in non-equilibrium molecular dynamics calculations over sub-million atoms

    Full text link
    Non-equilibrium molecular dynamics (NEMD) techniques are widely used for investigating lattice thermal conductivity. Recently, machine learning force fields (MLFFs) have emerged as a promising approach to enhance the precision in NEMD simulations. This study is aimed at demonstrating the potential of MLFFs in realizing NEMD calculations for large-scale systems containing over 100,000 atoms with density functional theory (DFT)-level accuracy. Specifically, the atomic cluster expansion (ACE) force field is employed, using Si as an example. The ACE potential incorporates 4-body interactions and features a training dataset consisting of 1000 order structures from first-principles molecular dynamics calculations, resulting in a highly accurate vibrational spectrum. Moreover, the ACE potential can reproduce thermal conductivity values comparable with those derived from DFT calculations via the Boltzmann equation. To demonstrate the application of MLFFs to systems containing over 100,000 atoms, NEMD simulations are conducted on thin films ranging from 100 nm to 500 nm, with the 100 nm films exhibiting defect rates of up to 1.5%. The results show that the thermal conductivity deviates by less than 5% from DFT or theoretical results in both scenarios, which highlights the ability of the ACE potential in calculating the thermal conductivity on a large scale with DFT-level accuracy. The proposed approach is expected to promote the application of MLFFs in various fields and serve as a feasible alternative to virtual experiments. Furthermore, this work demonstrates the potential of MLFFs in enhancing the accuracy of NEMD simulations for investigating lattice thermal conductivity for systems with over 100,000 atoms.Comment: 24 pages including with supporting infomatio

    The Influence of Hyperactivity of the Hypothalamic-pituitary-adrenal Axis and Hyperglycemia on the 5-HT2A Receptor-mediated Wet-dog Shake Responses in Rats

    Get PDF
    Hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis induces hyperglycemia and serotonin (5-HT)2A receptor supersensitivity. In the present study, to investigate the effect of hyperglycemia on the function of 5-HT2A receptors, we compared the 5-HT2A receptor-mediated wet-dog shake responses in rats treated with adrenocorticotropic hormone (ACTH), dexamethasone and streptozotocin. ACTH (100 &#956;g/rat per day, s.c.), dexamethasone (1 mg/kg per day, s.c.) and streptozotocin (60 mg/kg, i.p.) produced significant hyperglycemia at 14 days after the start of these treatments, and the hyperglycemia was most pronounced in the streptozotocin-treated rats. The wet-dog shake responses induced by (±)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI), a 5-HT2A receptor agonist, were significantly enhanced at 14 days after repeated treatment with ACTH and dexamethasone. However, streptozotocin-induced diabetes had no effect on the wet-dog shake responses. The results of the present study suggest that hyperglycemia is not strongly associated with the enhanced susceptibility of 5-HT2A receptors under the condition of hyperactivity of the HPA axis.</p

    High-performance multi-functional reverse osmosis membranes obtained by carbon nanotube.polyamide nanocomposite

    Get PDF
    Clean water obtained by desalinating sea water or by purifying wastewater, constitutes a major technological objective in the so-called water century. In this work, a high-performance reverse osmosis (RO) composite thin membrane using multi-walled carbon nanotubes (MWCNT) and aromatic polyamide (PA), was successfully prepared by interfacial polymerization. The effect of MWCNT on the chlorine resistance, antifouling and desalination performances of the nanocomposite membranes were studied. We found that a suitable amount of MWCNT in PA, 15.5 wt.%, not only improves the membrane performance in terms of flow and antifouling, but also inhibits the chlorine degradation on these membranes. Therefore, the present results clearly establish a solid foundation towards more efficient large-scale water desalination and other water treatment processes.ArticleSCIENTIFIC REPORTS. 5:13562 (2015)journal articl

    Indocyanine Green (ICG) Lymphography Is Superior to Lymphoscintigraphy for Diagnostic Imaging of Early Lymphedema of the Upper Limbs

    Get PDF
    BACKGROUND: Secondary lymphedema causes swelling in limbs due to lymph retention following lymph node dissection in cancer therapy. Initiation of treatment soon after appearance of edema is very important, but there is no method for early diagnosis of lymphedema. In this study, we compared the utility of four diagnostic imaging methods: magnetic resonance imaging (MRI), computed tomography (CT), lymphoscintigraphy, and Indocyanine Green (ICG) lymphography. PATIENTS AND METHODS: Between April 2010 and November 2011, we examined 21 female patients (42 arms) with unilateral mild upper limb lymphedema using the four methods. The mean age of the patients was 60.4 years old (35-81 years old). Biopsies of skin and collecting lymphatic vessels were performed in 7 patients who underwent lymphaticovenous anastomosis. RESULTS: The specificity was 1 for all four methods. The sensitivity was 1 in ICG lymphography and MRI, 0.62 in lymphoscintigraphy, and 0.33 in CT. These results show that MRI and ICG lymphography are superior to lymphoscintigraphy or CT for diagnosis of lymphedema. In some cases, biopsy findings suggested abnormalities in skin and lymphatic vessels for which lymphoscintigraphy showed no abnormal findings. ICG lymphography showed a dermal backflow pattern in these cases. CONCLUSIONS: Our findings suggest the importance of dual diagnosis by examination of the lymphatic system using ICG lymphography and evaluation of edema in subcutaneous fat tissue using MRI

    The Forward Physics Facility at the High-Luminosity LHC

    Get PDF

    1-Methylcyclopropene Maintains Firmness and Peel Color and Reduces Decay Area of Artificially Wounded Fruits in Mature Japanese Pear (Pyrus pyrifolia Nakai ‘Shizukisui’)

    No full text
    Recently, there has been an increasing need to prolong the quality of matured fruits to promote the distribution of fresh fruits to consumers and processing facilities. Studies have shown that 1-methylcyclopropene (1-MCP), an inhibitor of ethylene, can maintain the firmness and quality of several fruits for a long duration. Therefore, the aim of this study was to examine the effect of 1-MCP treatment on the firmness, rind color, and decay rate of the Japanese pear ‘Shizukisui’. Results showed that 1-MCP treatment alone and 1-MCP treatment after precooling significantly maintained the firmness of mature fruits compared with untreated fruits. However, the presence or absence of ethylene addition did not significantly affect fruit firmness; moreover, 1-MCP treatment after precooling tended to reduce moisture loss in immature fruits. Regarding the peel color of the fruits, 1-MCP treatment alone and 1-MCP after precooling treatment increased the L*, b*, and C* values of mature fruits but reduced the values in immature fruits. Compared with the control group, the 1-MCP treatment caused a decrease in the decay area of wounded ‘Shizukisui’ and ‘Kosui’ fruits and decreased the decay rate of wounded ‘Kosui’. Overall, this study showed that 1-MCP treatment maintained the firmness and peel color of Japanese pear and reduced its decay rate
    • 

    corecore