22 research outputs found
Population Outflow from Earthquake-Stricken Areas and Resindent-led Reconstruction: A Theoretical Analysis
We build a cultural transmission model to consider an effective measure for mitigating population outflow from areas affected by the Great East Japan Earthquake. In an economy with firms and two heterogeneous agents (residents within earthquake stricken areas and around these areas), when the stable interior steady state exists in our system, first we analyze how subsidies to firms affect the steady state population share for residents in earthquake stricken areas. Depending on conditions, the policy may either succeed (an increase in the population share compared to the case with no policy) or fail (a decrease in the share). Second, even if the subsidy policy fails, resident-led reconstruction efforts could potentially increase the steady state population share for residents when subsidy is simultaneously given. From the analysis, we find that resident-led reconstruction efforts can be an effective measure to mitigate the population outflow in earthquake stricken areas
Thermal-noise-limited underground interferometer CLIO
We report on the current status of CLIO (Cryogenic Laser Interferometer
Observatory), which is a prototype interferometer for LCGT (Large Scale
Cryogenic Gravitational-Wave Telescope). LCGT is a Japanese next-generation
interferometric gravitational wave detector featuring the use of cryogenic
mirrors and a quiet underground site. The main purpose of CLIO is to
demonstrate a reduction of the mirror thermal noise by cooling the sapphire
mirrors. CLIO is located in an underground site of the Kamioka mine, 1000 m
deep from the mountain top, to verify its advantages. After a few years of
commissioning work, we have achieved a thermal-noise-limited sensitivity at
room temperature. One of the main results of noise hunting was the elimination
of thermal noise caused by a conductive coil-holder coupled with a pendulum
through magnets.Comment: 10 pages, 6 figures, Proceedings of the 8th Edoardo Amaldi Conference
on Gravitational Wave
Reduction of thermal fluctuations in a cryogenic laser interferometric gravitational wave detector
The thermal fluctuation of mirror surfaces is the fundamental limitation for
interferometric gravitational wave (GW) detectors. Here, we experimentally
demonstrate for the first time a reduction in a mirror's thermal fluctuation in
a GW detector with sapphire mirrors from the Cryogenic Laser Interferometer
Observatory at 17\,K and 18\,K. The detector sensitivity, which was limited by
the mirror's thermal fluctuation at room temperature, was improved in the
frequency range of 90\,Hz to 240\,Hz by cooling the mirrors. The improved
sensitivity reached a maximum of at 165\,Hz.Comment: Accepted for publication in Physical Review Letters, 5 pages, 2
figure
Current status of Japanese detectors
Current status of TAMA and CLIO detectors in Japan is reported in this
article. These two interferometric gravitational-wave detectors are being
developed for the large cryogenic gravitational wave telescope (LCGT) which is
a future plan for detecting gravitational wave signals at least once per year.
TAMA300 is being upgraded to improve the sensitivity in low frequency region
after the last observation experiment in 2004. To reduce the seismic noises, we
are installing new seismic isolation system, which is called TAMA Seismic
Attenuation System, for the four test masses. We confirmed stable mass locks of
a cavity and improvements of length and angular fluctuations by using two SASs.
We are currently optimizing the performance of the third and fourth SASs. We
continue TAMA300 operation and R&D studies for LCGT. Next data taking in the
summer of 2007 is planned.
CLIO is a 100-m baseline length prototype detector for LCGT to investigate
interferometer performance in cryogenic condition. The key features of CLIO are
that it locates Kamioka underground site for low seismic noise level, and
adopts cryogenic Sapphire mirrors for low thermal noise level. The first
operation of the cryogenic interferometer was successfully demonstrated in
February of 2006. Current sensitivity at room temperature is close to the
target sensitivity within a factor of 4. Several observation experiments at
room temperature have been done. Once the displacement noise reaches at thermal
noise level of room temperature, its improvement by cooling test mass mirrors
should be demonstrated.Comment: 6 pages, 5 figures, Proceedings of GWDAW-1
Coincidence analysis to search for inspiraling compact binaries using TAMA300 and LISM data
Japanese laser interferometric gravitational wave detectors, TAMA300 and
LISM, performed a coincident observation during 2001. We perform a coincidence
analysis to search for inspiraling compact binaries. The length of data used
for the coincidence analysis is 275 hours when both TAMA300 and LISM detectors
are operated simultaneously. TAMA300 and LISM data are analyzed by matched
filtering, and candidates for gravitational wave events are obtained. If there
is a true gravitational wave signal, it should appear in both data of detectors
with consistent waveforms characterized by masses of stars, amplitude of the
signal, the coalescence time and so on. We introduce a set of coincidence
conditions of the parameters, and search for coincident events. This procedure
reduces the number of fake events considerably, by a factor
compared with the number of fake events in single detector analysis. We find
that the number of events after imposing the coincidence conditions is
consistent with the number of accidental coincidences produced purely by noise.
We thus find no evidence of gravitational wave signals. We obtain an upper
limit of 0.046 /hours (CL ) to the Galactic event rate within 1kpc from
the Earth. The method used in this paper can be applied straightforwardly to
the case of coincidence observations with more than two detectors with
arbitrary arm directions.Comment: 28 pages, 17 figures, Replaced with the version to be published in
Physical Review
Results of the search for inspiraling compact star binaries from TAMA300's observation in 2000-2004
We analyze the data of TAMA300 detector to search for gravitational waves
from inspiraling compact star binaries with masses of the component stars in
the range 1-3Msolar. In this analysis, 2705 hours of data, taken during the
years 2000-2004, are used for the event search. We combine the results of
different observation runs, and obtained a single upper limit on the rate of
the coalescence of compact binaries in our Galaxy of 20 per year at a 90%
confidence level. In this upper limit, the effect of various systematic errors
such like the uncertainty of the background estimation and the calibration of
the detector's sensitivity are included.Comment: 8 pages, 4 Postscript figures, uses revtex4.sty The author list was
correcte
Observation results by the TAMA300 detector on gravitational wave bursts from stellar-core collapses
We present data-analysis schemes and results of observations with the TAMA300
gravitational-wave detector, targeting burst signals from stellar-core collapse
events. In analyses for burst gravitational waves, the detection and
fake-reduction schemes are different from well-investigated ones for a
chirp-wave analysis, because precise waveform templates are not available. We
used an excess-power filter for the extraction of gravitational-wave
candidates, and developed two methods for the reduction of fake events caused
by non-stationary noises of the detector. These analysis schemes were applied
to real data from the TAMA300 interferometric gravitational wave detector. As a
result, fake events were reduced by a factor of about 1000 in the best cases.
The resultant event candidates were interpreted from an astronomical viewpoint.
We set an upper limit of 2.2x10^3 events/sec on the burst gravitational-wave
event rate in our Galaxy with a confidence level of 90%. This work sets a
milestone and prospects on the search for burst gravitational waves, by
establishing an analysis scheme for the observation data from an
interferometric gravitational wave detector
Stable Operation of a 300-m Laser Interferometer with Sufficient Sensitivity to Detect Gravitational-Wave Events within our Galaxy
TAMA300, an interferometric gravitational-wave detector with 300-m baseline
length, has been developed and operated with sufficient sensitivity to detect
gravitational-wave events within our galaxy and sufficient stability for
observations; the interferometer was operated for over 10 hours stably and
continuously. With a strain-equivalent noise level of , a signal-to-noise ratio (SNR) of 30 is expected for
gravitational waves generated by a coalescence of 1.4 -1.4
binary neutron stars at 10 kpc distance. %In addition, almost all noise sources
which limit the sensitivity and which %disturb the stable operation have been
identified. We evaluated the stability of the detector sensitivity with a
2-week data-taking run, collecting 160 hours of data to be analyzed in the
search for gravitational waves.Comment: 5 pages, 4 figure
Residual disease is a strong prognostic marker in patients with acute lymphoblastic leukaemia with chemotherapy‐refractory or relapsed disease prior to allogeneic stem cell transplantation
Allogeneic haematopoietic stem cell transplantation (allo-HSCT) is one of the curative treatment options for acute lymphoblastic leukaemia (ALL). However, the outcomes in patients transplanted without complete remission (non-CR) have not yet been fully reported, and detailed analyses are required to identify subgroups in which optimal prognosis is expected and to optimize pre-transplant therapeutic strategies. Hence, we performed a multicentred retrospective cohort study including a total of 663 adult ALL patients transplanted at non-CR status; the median bone marrow (BM) blast counts at HSCT was 13·2%, and 203 patients (30·6%) were treated at primary induction failure status. The overall survival (OS) was 31·1% at two years, and the multivariate analyses identified five prognostic risk factors, including older age (≥50 years), increased BM blasts (≥10%), poor performance status, high haematopoietic cell transplantation (HCT)-comorbidity index, and relapsed disease status, among which BM blast was the most significantly related. A predictive scoring system composed of these risk factors clearly stratified OS (15·6-59·5% at two years). In conclusion, this is the first large-scale study to analyze the correlation of patient characteristics with post-transplant prognosis in ALL transplanted at non-CR status. The importance of blast control before HSCT should be focused on for better patient prognosis