33 research outputs found

    Application of the ANP to the prioritization of project stakeholders in the context of responsible research and innovation

    Full text link
    [EN] This paper presents a methodology to assess the stakeholders¿ influence in a research project within the context of responsible research and innovation. The methodology is based on a combination of the multicriteria decision making technique analytic network process and the key areas of responsible research. The method allows ranking and ordering the project¿s stakeholders based on their influence upon its responsibility. The purpose of such an assessment is to help research teams to more efficiently devote their limited resources to stakeholder management. The procedure is applied to a case study of the Information and Communication Technology business sector. It is an ongoing project at an early phase of development. Influential stakeholders have been identified first, and have been further classified into groups based on their relative importance. The assessment of their influence has been based on up to 16 different criteria, mainly belonging to the framework of responsible research and innovation. In the case study, the most influential criterion was the Capability to promote public engagement, while Developers were found to be the stakeholders most contributing to the research project responsibility. However, as explained, this is a temporary situation, valid for the current project development situation. It may vary over time as criteria vary in weight and stakeholders vary in influence.The authors would like to thank to our anonymous referees for their constructive comments and suggestions that helped us to improve the quality of the paper. Also, to the “Bolívar Gana con Ciencia” program from the Gobernación de Bolívar (Colombia) for the financial support. For the same reason, the authors are grateful to the Spanish Agencia Estatal de Investigación for its support of the project Propuesta de Indicadores para Impulsar el Diseño de Una Política Orientada al Desarrollo de Investigación e Innovación Responsable en España (CSO2016-76828-R)Ligardo-Herrera, I.; Gómez-Navarro, T.; Gonzalez-Urango, H. (2018). Application of the ANP to the prioritization of project stakeholders in the context of responsible research and innovation. Central European Journal of Operations Research. 1-23. https://doi.org/10.1007/s10100-018-0573-4S123Akbari N, Irawan CA, Jones DF, Menachof D (2017) A multi-criteria port suitability assessment for developments in the offshore wind industry. Renew Energy 102:118–133. https://doi.org/10.1016/j.renene.2016.10.035Aragonés-Beltrán P, García-Melón M, Montesinos-Valera J (2017) How to assess stakeholders’ influence in project management? A proposal based on the analytic network process. Int J Proj Manag. https://doi.org/10.1016/j.ijproman.2017.01.001Barrios Ortiz MA, De Felice F, Negrete KP et al (2016) An AHP-topsis integrated model for selecting the most appropriate tomography equipment. Int J Inf Technol Decis Mak 15:861–885. https://doi.org/10.1142/S021962201640006XBhupendra KV, Sangle S (2017) What drives successful implementation of product stewardship strategy? The role of absorptive capability. Corp Soc Responsib Environ Manag 24:186–198. https://doi.org/10.1002/csr.1394Botero C, Pereira C, Tosic M, Manjarrez G (2015) Design of an index for monitoring the environmental quality of tourist beaches from a holistic approach. Ocean Coast Manag 108:65–73. https://doi.org/10.1016/j.ocecoaman.2014.07.017Brugha R (2000) Stakeholder analysis: a review. Health Policy Plan 15:239–246. https://doi.org/10.1093/heapol/15.3.239Burget M, Bardone E, Pedaste M (2017) Definitions and conceptual dimensions of responsible research and innovation: a literature review. Sci Eng Ethics. https://doi.org/10.1007/s11948-016-9782-1Caballero-Luque A, Aragonés-Beltrán P, García-Melón M, Dema-Pérez C (2010) Analysis of the alignment of Company goals to Web content using ANP. Int J Inf Technol Decis Mak 9:419–436. https://doi.org/10.1142/S0219622010003889Claudia K, Köppl A, Stagl S (2014) Towards an operational measurement of socio-ecological performance. Working Paper no 52Colin E, Ackermann F (1998) Making strategy: the journey of strategic management. SAGE Publications Ltd, LondonDahlsrud A (2006) How corporate social responsibility is defined: an analysis of 37 definitions. Corp Soc Responsib Environ Manag 13:1–13. https://doi.org/10.1002/csrde Jong IM, Kupper F, Broerse J (2016) Inclusive deliberation and action in emerging RRI practices: the case of neuroimaging in security management. J Responsib Innov 3:26–49. https://doi.org/10.1080/23299460.2015.1137752De Lopez T (2001) Stakeholder management for conservation projects: a case study of Ream National Park, Cambodia. J Environ Manag 28:47–60De Lotto R, Gazzola V, Gossenberg S et al (2016) Proposal to reduce natural risks: analytic network process to evaluate efficiency of city planning strategies. Springer, Cham, pp 650–664European Commission (2011) DG Research workshop on Responsible Research & Innovation in EuropeGeoghegan-Quinn M (2012) Responsible research and innovation. Europe’s ability to respond to societal challengesGörener A (2012) Comparing AHP and ANP: an application of strategic decisions making in a Manufacturing Company. Int J Bus Soc Sci 3:194–208Jaafari A, Najafi A, García-Melón M (2015) Decision-making for the selection of a best wood extraction method: an analytic network process approach. For Policy Econ 50:200–209. https://doi.org/10.1016/j.forpol.2014.09.010Koops BJ (2015) The concepts, approaches, and applications of responsible innovations: an introduction. In: Koops BJ, Oosterlaken I, Romijn H, Swierstra T, van den Hoven J (eds) Responsible innovation 2: concepts, approaches, and applications. Springer, Dordrecht, pp 1–15Ligardo-Herrera I, Gómez-Navarro T, Inigo EA, Blok V (2018) Addressing climate change in responsible research and innovation: recommendations for its operationalization. Sustainability 10:20. https://doi.org/10.3390/su10062012Lubberink R, Blok V, van Ophem J, Omta O (2017) Lessons for responsible innovation in the business context: a systematic literature review of responsible, social and sustainable innovation practices. Sustainability. https://doi.org/10.3390/su9050721Mitchell RK, Agle BR, Wood DJ (1997) Toward a theory of stakeholder identification and salience: defining the principle of who and what really. Acad Manag Rev 22:853–886. https://doi.org/10.5465/AMR.1997.9711022105Owen R, Bessant J, Heintz M (2013) Responsible innovation: managing the responsible emergence of science and innovation in society. Wiley, New YorkPeris J, García-Melón M, Gómez-Navarro T, Calabuig C (2013) Prioritizing local agenda 21 programmes using analytic network process: a Spanish case study. Sustain Dev 21:338–352. https://doi.org/10.1002/sd.514Ramzan N, Degenkolbe S, Witt W (2008) Evaluating and improving environmental performance of HC’s recovery system: a case study of distillation unit. Chem Eng J 140:201–213. https://doi.org/10.1016/j.cej.2007.09.042Rosso M, Bottero M, Pomarico S et al (2014) Integrating multicriteria evaluation and stakeholders analysis for assessing hydropower projects. Energy Policy 67:870–881. https://doi.org/10.1016/j.enpol.2013.12.007Saaty TL (1990) How to make a decision: the analytic hierarchy process. Eur J Oper Res 48:9–26. https://doi.org/10.1016/0377-2217(90)90057-ISaaty TL (1994) How to make a decision: the analytic hierarchy process. Interfaces (Providence) 24:19–43Saaty TL (2001) The analytic network process: decision making with dependence and feedback. RWS Publications, PittsburghSaaty TL (2005) Theory and applications of the analytic network process: decision making with benefits, opportunities, costs, and risks. The Analytic Hierarchy Process (AHP) and its generalization to dependence and feedback, the Analytic Network Process (ANP), are methods of relative measurement of tangibles and intangibles. Being able to derive such measurements is essential for making goSaaty TL (2008) Decision making with the analytic hierarchy process. Int J Serv Sci 1:83. https://doi.org/10.1504/IJSSCI.2008.017590Saaty TL, Peniwati K (2008) Group decision making : drawing out and reconciling differences. RWS Publications, PittsburghSangle S, Babu PR (2007) Evaluating sustainability practices in terms of stakeholders’ satisfaction. Int J Bus Gov Ethics 3:56. https://doi.org/10.1504/IJBGE.2007.011934Shiau TA, Chuen-Yu JK (2016) Developing an indicator system for measuring the social sustainability of offshore wind power farms. Sustainability. https://doi.org/10.3390/su8050470Šijanec M, Žarnić R, Šelih J (2009) Multicriterial sustainability assessment of residential buildings. Technol Econ Dev Econ 15:612–630. https://doi.org/10.3846/1392-8619.2009.15.612-630Sipahi S, Timor M (2010) The analytic hierarchy process and analytic network process: an overview of applications. Manag Decis 48:775–808. https://doi.org/10.1108/00251741011043920Sólnes J (2003) Environmental quality indexing of large industrial development alternatives using AHP. Environ Impact Assess Rev 23:283–303. https://doi.org/10.1016/S0195-9255(03)00004-0Stahl BC, Coeckelbergh M (2016) Ethics of healthcare robotics: towards responsible research and innovation. Rob Auton Syst 86:152–161. https://doi.org/10.1016/j.robot.2016.08.018Stilgoe J, Owen R, Macnaghten P (2013) Developing a framework for responsible innovation. Res Policy 42:1568–1580. https://doi.org/10.1016/j.respol.2013.05.008Strand R, Spaapen J, Bauer MW et al (2015) Indicators for promoting and monitoring responsible research and innovation report from the expert group on policy indicatorsVaidya OS, Kumar S (2006) Analytic hierarchy process: an overview of applications. Eur J Oper Res 169:1–29. https://doi.org/10.1016/j.ejor.2004.04.028van de Poel I, Asveld L, Flipse S et al (2017) Company strategies for responsible research and innovation (RRI): a conceptual model. Sustainability 9:2045. https://doi.org/10.3390/su9112045Von Schomberg R (2011) Prospects for technology assessment in a framework of responsible research and innovation. Tech abschätzen lehren Bild transdisziplinärer Methoden. https://doi.org/10.1007/978-3-531-93468-6_2Wu X, Cui P (2016) A study of the time-space evolution characteristics of urban-rural integration development in a mountainous area based on ESDA-GIS: the case of the Qinling-Daba mountains in China. Sustainability 8:1085. https://doi.org/10.3390/su8111085Yüksel I, Dagdeviren M (2007) Using the analytic network process (ANP) in a SWOT analysis—a case study for a textile firm. Inf Sci (NY) 177:3364–3382. https://doi.org/10.1016/j.ins.2007.01.00

    An ANP-based approach for the selection of photovoltaic solar power plant investment projects

    No full text
    In this paper the Analytic Network Process (ANP) is applied to the selection of photovoltaic (PV) solar power projects. These projects follow a long management and execution process from plant site selection to plant start-up. As a consequence, there are many risks of time delays and even of project stoppage. In the case study presented in this paper a top manager of an important Spanish company that operates in the power market has to decide on the best PV project (from four alternative projects) to invest based on risk minimization. The manager identified 50 project execution delay and/or stoppage risks. The influences between the elements of the network (groups of risks and alternatives) were identified and analyzed using the ANP multicriteria decision analysis method. Two different ANP models were used: one hierarchy model (that considers AHP as a particular case of ANP) and one network-based model. The results obtained in each model were compared and analyzed. The main conclusion is that unlike the other models used in the study, the single network model can manage all the information of the real-world problem and thus it is the decision analysis model recommended by the authors. The strengths and weaknesses of ANP as a multicriteria decision analysis tool are also described in the paper.Multicriteria decision analysis Analytic Network Process Photovoltaic solar power projects

    Integrating multicriteria evaluation and data visualization as a problem structuring approach to support territorial transformation projects

    No full text
    Large freight or passenger transport projects are problematic and controversial because many financial, technical, environmental and social aspects need to be considered. Indeed, the interface between the transport project and territorial planning domains is generally the focus of considerable heated debates, which often develop into conflicting decision contexts characterized by a high level of complexity. This paper presents a possible response to these difficulties through an innovative approach that integrates the analytic network process and the interactive visualization tool. The approach is intended to be deployed as problem structuring method, with a view to creating a common language for the actors involved and a shared basis for generating fruitful discussions. The proposed approach was applied in the context of the German section of the Genoa–Rotterdam railway corridor within the Interreg IVB NWE Project ‘‘Code24’’. The reported application shows how the combination of visualization and real-time interaction with spatial data provided effective decision support to a multinational stakeholder group. More generally, the application presented in this paper aims to demonstrate the potential of the approach for the selection of a transport improvement strategy within the content of territorial transformation
    corecore