6 research outputs found
A nonlinear elliptic problem with terms concentrating in the boundary
In this paper we investigate the behavior of a family of steady state
solutions of a nonlinear reaction diffusion equation when some reaction and
potential terms are concentrated in a -neighborhood of a portion
of the boundary. We assume that this -neighborhood shrinks
to as the small parameter goes to zero. Also, we suppose
the upper boundary of this -strip presents a highly oscillatory
behavior. Our main goal here is to show that this family of solutions converges
to the solutions of a limit problem, a nonlinear elliptic equation that
captures the oscillatory behavior. Indeed, the reaction term and concentrating
potential are transformed into a flux condition and a potential on ,
which depends on the oscillating neighborhood
A composite approach to produce reference datasets for extratropical cyclone tracks: application to Mediterranean cyclones
Many cyclone detection and tracking methods (CDTMs) have been developed in the past to study the climatology of extratropical cyclones. However, all CDTMs have different approaches in defining and tracking cyclone centers. This naturally leads to cyclone track climatologies with inconsistent physical characteristics. More than that, it is typical for CDTMs to produce a non-negligible number of tracks of weak atmospheric features, which do not correspond to large-scale or mesoscale vortices and can differ significantly between CDTMs. Lack of consensus in CDTM outputs and the inclusion of significant numbers of uncertain tracks therein have long prohibited the production of a commonly accepted reference dataset of extratropical cyclone tracks. Such a dataset could allow comparable results on the analysis of storm track climatologies and could also contribute to the evaluation and improvement of CDTMs. To cover this gap, we present a new methodological approach that combines overlapping tracks from different CDTMs and produces composite tracks that concentrate the agreement of more than one CDTM. In this study we apply this methodology to the outputs of 10 well-established CDTMs which were originally applied to ERA5 reanalysis in the 42-year period of 1979-2020. We tested the sensitivity of our results to the spatiotemporal criteria that identify overlapping cyclone tracks, and for benchmarking reasons, we produced five reference datasets of subjectively tracked cyclones. Results show that climatological numbers of composite tracks are substantially lower than the ones of individual CDTMs, while benchmarking scores remain high (i.e., counting the number of subjectively tracked cyclones captured by the composite tracks). Our results show that composite tracks tend to describe more intense and longer-lasting cyclones with more distinguished early, mature and decay stages than the cyclone tracks produced by individual CDTMs. Ranking the composite tracks according to their confidence level (defined by the number of contributing CDTMs), it is shown that the higher the confidence level, the more intense and long-lasting cyclones are produced. Given the advantage of our methodology in producing cyclone tracks with physically meaningful and distinctive life stages, we propose composite tracks as reference datasets for climatological research in the Mediterranean. The Supplement provides the composite Mediterranean tracks for all confidence levels, and in the conclusion we discuss their adequate use for scientific research and applications
Phagocyte nicotinamide adenine dinucleotide phosphate oxidase activity in patients with inherited IFN-纬R1 or IFN-纬R2 deficiency
letter to the edito
The environmental low-frequency background for macro-calorimeters at the millikelvin scale
Many of the most sensitive physics experiments searching for rare events, like neutrinoless double beta (0 nu beta beta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}) decay, coherent elastic neutrino nucleus scattering and dark matter interactions, rely on cryogenic macro-calorimeters operating at the mK-scale. Located underground at the Gran Sasso National Laboratory (LNGS), in central Italy, CUORE (Cryogenic Underground Observatory for Rare Events) is one of the leading experiments for the search of 0 nu beta beta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} decay, implementing the low-temperature calorimetric technology. We present a novel multi-device analysis to correlate environmental phenomena with the low-frequency noise of low-temperature calorimeters. Indeed, the correlation of marine and seismic data with data from a couple of CUORE detectors indicates that cryogenic detectors are sensitive not only to intense vibrations generated by earthquakes, but also to the much fainter vibrations induced by marine microseisms in the Mediterranean Sea due to the motion of sea waves. Proving that cryogenic macro-calorimeters are sensitive to such environmental sources of noise opens the possibility of studying their impact on the detectors physics-case sensitivity. Moreover, this study could pave the road for technology developments dedicated to the mitigation of the noise induced by marine microseisms, from which the entire community of cryogenic calorimeters can benefit
Efficacy and adverse events profile of videolaryngoscopy in critically ill patients: subanalysis of the INTUBE study
Background: Tracheal intubation is a high-risk procedure in the critically ill, with increased intubation failure rates and a high risk of other adverse events. Videolaryngoscopy might improve intubation outcomes in this population, but evidence remains conflicting, and its impact on adverse event rates is debated.Methods: This is a subanalysis of a large international prospective cohort of critically ill patients (INTUBE Study) performed from 1 October 2018 to 31 July 2019 and involving 197 sites from 29 countries across five continents. Our primary aim was to determine the first-pass intubation success rates of videolaryngoscopy. Secondary aims were characterising (a) videolaryngoscopy use in the critically ill patient population and (b) the incidence of severe adverse effects compared with direct laryngoscopy.Results: Of 2916 patients, videolaryngoscopy was used in 500 patients (17.2%) and direct laryngoscopy in 2416 (82.8%). First-pass intubation success was higher with videolaryngoscopy compared with direct laryngoscopy (84% vs 79%, P1/40.02). Patients undergoing videolaryngoscopy had a higher frequency of difficult airway predictors (60% vs 40%, P<0.001). In adjusted analyses, videolaryngoscopy increased the probability of first-pass intubation success, with an OR of 1.40 (95% confidence interval [CI] 1.05-1.87). Videolaryngoscopy was not significantly associated with risk of major adverse events (odds ratio 1.24, 95% CI 0.95-1.62) or cardiovascular events (odds ratio 0.78, 95% CI 0.60-1.02).Conclusions: In critically ill patients, videolaryngoscopy was associated with higher first-pass intubation success rates, despite being used in a population at higher risk of difficult airway management. Videolaryngoscopy was not associated with overall risk of major adverse events