152 research outputs found

    Behavioural correlate of choice confidence in a discrete trial paradigm

    Get PDF
    How animals make choices in a changing and often uncertain environment is a central theme in the behavioural sciences. There is a substantial literature on how animals make choices in various experimental paradigms but less is known about the way they assess a choice after it has been made in terms of the expected outcome. Here, we used a discrete trial paradigm to characterise how the reward history shaped the behaviour on a trial by trial basis. Rats initiated each trial which consisted of a choice between two drinking spouts that differed in their probability of delivering a sucrose solution. Critically, sucrose was delivered after a delay from the first lick at the spouts--this allowed us to characterise the behavioural profile during the window between the time of choice and its outcome. Rats' behaviour converged to optimum choice, both during the acquisition phase and after the reversal of contingencies. We monitored the post-choice behaviour at a temporal precision of 1 millisecond; lick-response profiles revealed that rats spent more time at the spout with the higher reward probability and exhibited a sparser lick pattern. This was the case when we exclusively examined the unrewarded trials, where the outcome was identical. The differential licking profiles preceded the differential choice ratios and could thus predict the changes in choice behaviour.This research was supported by the Australian Research Council Discovery Project Grant DP0987133 to EA

    Electrical Stimulation of the Primate Lateral Habenula Suppresses Saccadic Eye Movement through a Learning Mechanism

    Get PDF
    The lateral habenula (LHb) is a brain structure which represents negative motivational value. Neurons in the LHb are excited by unpleasant events such as reward omission and aversive stimuli, and transmit these signals to midbrain dopamine neurons which are involved in learning and motivation. However, it remains unclear whether these phasic changes in LHb neuronal activity actually influence animal behavior. To answer this question, we artificially activated the LHb by electrical stimulation while monkeys were performing a visually guided saccade task. In one block of trials, saccades to one fixed direction (e.g., right direction) were followed by electrical stimulation of the LHb while saccades to the other direction (e.g., left direction) were not. The direction-stimulation contingency was reversed in the next block. We found that the post-saccadic stimulation of the LHb increased the latencies of saccades in subsequent trials. Notably, the increase of the latency occurred gradually as the saccade was repeatedly followed by the stimulation, suggesting that the effect of the post-saccadic stimulation was accumulated across trials. LHb stimulation starting before saccades, on the other hand, had no effect on saccade latency. Together with previous studies showing LHb activation by reward omission and aversive stimuli, the present stimulation experiment suggests that LHb activity contributes to learning to suppress actions which lead to unpleasant events

    Peeling Plaids Apart: Context Counteracts Cross-Orientation Contrast Masking

    Get PDF
    Background: Contrast discrimination for an image is usually harder if another image is superimposed on top. We asked whether such contrast masking may be enhanced or relieved depending on cues promoting integration of both images as a single pattern, versus segmentation into two independent components. Methodology & Principal Findings: Contrast discrimination thresholds for a foveal test grating were sharply elevated in the presence of a perfectly overlapping orthogonally-oriented mask grating. However thresholds returned to the unmasked baseline when a surround grating was added, having the same orientation and phase of either the test or mask grating. Both such masking and β€˜unmasking’ effects were much stronger for moving than static stimuli. Conclusions & Significance: Our results suggest that common-fate motion reinforces the perception of a single coherent plaid pattern, while the surround helps to identify each component independently, thus peeling the plaid apart again. These results challenge current models of early vision, suggesting that higher-level surface organization influences contrast encoding, determining whether the contrast of a grating may be recovered independently from that of its mask

    Behavioral correlates of the decision process in a dynamic environment: post-choice latencies reflect relative value and choice evaluation

    Get PDF
    One characteristic of natural environments is that outcomes vary across time. Animals need to adapt to these environmental changes and adjust their choices accordingly. In this experiment, we investigated the sensitivity with which rats could detect, and adapt to, multiple changes in the environment. Rats chose between two spouts which delivered 5% sucrose rewards with distinct probabilities. Across three phases, reward probabilities changed in size (large or small) and direction (increase or decrease). A discrete trial-structure was used, which allowed the choice process to be decomposed into three distinct response latency measures (choice execution latency, spout sampling duration, and trial-initiation latency). We found that a large decrease in reward probabilities rapidly produced the greatest change in choice proportions. The time taken to execute a choice reflected the differences in reward probabilities across the two spouts in some cases, but also reflected training history. By contrast, the amount of time rats spent responding at reward spouts in anticipation of reward consistently reflected the relative likelihood of reward across the two spouts and not the absolute probability of reward. The latency to initiate the subsequent trial reflected choice evaluation. These three response latencies thus indexed key behavioral correlates of the choice process as it unfolds in time. We discuss how this paradigm can be used to assess the corresponding neural correlates of decision-makin

    Dynamics of population activity in rat sensory cortex: Network correlations predict anatomical arrangement and information content

    Get PDF
    To study the spatiotemporal dynamics of neural activity in a cortical population, we implanted a 10 Γ— 10 microelectrode array in the vibrissal cortex of urethane-anesthetized rats. We recorded spontaneous neuronal activity as well as activity evoked in response to sustained and brief sensory stimulation. To quantify the temporal dynamics of activity, we computed the probability distribution function (PDF) of spiking on one electrode given the observation of a spike on another. The spike-triggered PDFs quantified the strength, temporal delay, and temporal precision of correlated activity across electrodes. Nearby cells showed higher levels of correlation at short delays, whereas distant cells showed lower levels of correlation, which tended to occur at longer delays. We found that functional space built based on the strength of pairwise correlations predicted the anatomical arrangement of electrodes. Moreover, the correlation profile of electrode pairs during spontaneous activity predicted the β€œsignal” and β€œnoise” correlations during sensory stimulation. Finally, mutual information analyses revealed that neurons with stronger correlations to the network during spontaneous activity, conveyed higher information about the sensory stimuli in their evoked response. Given the 400-ΞΌm-distance between adjacent electrodes, our functional quantifications unravel the spatiotemporal dynamics of activity among nearby and distant cortical columns

    Informational basis of sensory adaptation: Entropy and single-spike efficiency in rat barrel cortex

    No full text
    We showed recently that exposure to whisker vibrations enhances coding efficiency in rat barrel cortex despite increasing correlations in variability (Adibi et al., 2013). Here, to understand how adaptation achieves this improvement in sensory representation, we decomposed the stimulus information carried in neuronal population activity into its fundamental components in the framework of information theory. In the context of sensory coding, these components are the entropy of the responses across the entire stimulus set (response entropy) and the entropy of the responses conditional on the stimulus (conditional response entropy). We found that adaptation decreased response entropy and conditional response entropy at both the level of single neurons and the pooled activity of neuronal populations. However, the net effect of adaptation was to increase the mutual information because the drop in the conditional entropy outweighed the drop in the response entropy. The information transmitted by a single spike also increased under adaptation. As population size increased, the information content of individual spikes declined but the relative improvement attributable to adaptation was maintained

    Sensory Prioritization in Rats: Behavioral Performance and Neuronal Correlates

    Get PDF
    Operating with some finite quantity of processing resources, an animal would benefit from prioritizing the sensory modality expected to provide key information in a particular context. The present study investigated whether rats dedicate attentional resources to the sensory modality in which a near-threshold event is more likely to occur. We manipulated attention by controlling the likelihood with which a stimulus was presented from one of two modalities. In a whisker session, 80% of trials contained a brief vibration stimulus applied to whiskers and the remaining 20% of trials contained a brief change of luminance. These likelihoods were reversed in a visual session. When a stimulus was presented in the high-likelihood context, detection performance increased and was faster compared with the same stimulus presented in the low-likelihood context. Sensory prioritization was also reflected in neuronal activity in the vibrissal area of primary somatosensory cortex: single units responded differentially to the whisker vibration stimulus when presented with higher probability compared with lower probability. Neuronal activity in the vibrissal cortex displayed signatures of multiplicative gain control and enhanced response to vibration stimuli during the whisker session. In conclusion, rats allocate priority to the more likely stimulus modality and the primary sensory cortex may participate in the redistribution of resources

    Correlation between cortical state and locus coeruleus activity: Implications for sensory coding in rat barrel cortex

    Get PDF
    Cortical state modulates the background activity of cortical neurons, and their evoked response to sensory stimulation. Multiple mechanisms are involved in switching between cortical states including various neuromodulatory systems. Locus Coeruleus (LC) is one of the major neuromodulatory nuclei in the brainstem with widespread projections throughout the brain and modulates the activity of cells and networks. Here, we quantified the link between the LC spontaneous activity, cortical state and sensory processing in the rat vibrissal somatosensory β€œbarrel” cortex (BC). We simultaneously recorded unit activity from LC and BC along with prefrontal electroencephalogram (EEG) while presenting brief whisker deflections under urethane anesthesia. The ratio of low to high frequency components of EEG (referred to as the L/H ratio) was employed to identify cortical state. We found that the spontaneous activity of LC units exhibited a negative correlation with the L/H ratio. Cross-correlation analysis revealed that changes in LC firing preceded changes in the cortical state: the correlation of the LC firing profile with the L/H ratio was maximal at an average lag of βˆ’1.2 s. We further quantified BC neuronal responses to whisker stimulation during the synchronized and desynchronized states. In the desynchronized state, BC neurons showed lower stimulus detection threshold, higher response fidelity, and shorter response latency. The most prominent change was observed in the late phase of BC evoked activity (100–400 ms post stimulus onset): almost every BC unit exhibited a greater late response during the desynchronized state. Categorization of the BC evoked responses based on LC activity (into high and low LC discharge rates) resulted in highly similar response profiles compared to categorization based on the cortical state (low and high L/H ratios). These findings provide evidence for the involvement of the LC neuromodulatory system in desynchronization of cortical state and the consequent enhancement of sensory coding efficiency

    TRPA1 expression and its functional activation in rodent cortex

    Get PDF
    TRPA1 is a non-selective cation channel involved in pain sensation and neurogenic inflammation. Although TRPA1 is well established in a number of organs including the nervous system, its presence and function in the mammalian cortex remains unclear. Here, we demonstrate the expression of TRPA1 in rodent somatosensory cortex through immunostaining and investigate its functional activation by whole-cell electrophysiology, Ca2+ imaging and two-photon photoswitching. Application of TRPA1 agonist (AITC) and antagonist (HC-030031) produced significant modulation of activity in layer 5 (L5) pyramidal neurons in both rats and mice; AITC increased intracellular Ca2+ concentrations and depolarized neurons, and both effects were blocked by HC-030031. These modulations were absent in the TRPA1 knockout mice. Next, we used optovin, a reversible photoactive molecule, to activate TRPA1 in individual L5 neurons of rat cortex. Optical control of activity was established by applying a tightly focused femtosecond-pulsed laser to optovin-loaded neurons. Light application depolarized neurons (n = 17) with the maximal effect observed at Ξ» = 720 nm. Involvement of TRPA1 was further confirmed by repeating the experiment in the presence of HC-030031, which diminished the light modulation. These results demonstrate the presence of TRPA1 in L5 pyramidal neurons and introduce a highly specific approach to further understand its functional significance.The experiments were supported by an Australian Research Council (ARC) Discovery Project (DP130101364), an ARC Future Fellowship (E.A.) and the ARC Centre of Excellence for Integrative Brain Function (CE140100007)
    • …
    corecore