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To study the spatiotemporal dynamics of neural activity in a cortical population, we

implanted a 10× 10 microelectrode array in the vibrissal cortex of urethane-anesthetized

rats. We recorded spontaneous neuronal activity as well as activity evoked in response

to sustained and brief sensory stimulation. To quantify the temporal dynamics of activity,

we computed the probability distribution function (PDF) of spiking on one electrode

given the observation of a spike on another. The spike-triggered PDFs quantified the

strength, temporal delay, and temporal precision of correlated activity across electrodes.

Nearby cells showed higher levels of correlation at short delays, whereas distant cells

showed lower levels of correlation, which tended to occur at longer delays. We found

that functional space built based on the strength of pairwise correlations predicted the

anatomical arrangement of electrodes. Moreover, the correlation profile of electrode pairs

during spontaneous activity predicted the “signal” and “noise” correlations during sensory

stimulation. Finally, mutual information analyses revealed that neurons with stronger

correlations to the network during spontaneous activity, conveyed higher information

about the sensory stimuli in their evoked response. Given the 400-µm-distance between

adjacent electrodes, our functional quantifications unravel the spatiotemporal dynamics

of activity among nearby and distant cortical columns.

Keywords: sensory coding, vibrissal, barrel cortex, noise correlation, signal correlation

INTRODUCTION

Since the classic works by Edgar D. Adrian (Adrian, 1926; Adrian and Zotterman, 1926), continuing
progress has been made in understanding how single neurons represent the external world (Parker
and Newsome, 1998). With recent advances in array recording and imaging techniques, a body of
research has focused on sensory processing at the level of neuronal populations (Panzeri et al.,
2015). The population analyses have revealed that cortical neurons fire in a correlated manner
(Averbeck et al., 2006; Cohen and Kohn, 2011) and exhibit systematic temporal and spatial
structures in their collective activity (Ohki et al., 2005; Miller et al., 2014; Okun et al., 2015). A

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org/Neural_Circuits/editorialboard
http://www.frontiersin.org/Neural_Circuits/editorialboard
http://www.frontiersin.org/Neural_Circuits/editorialboard
http://www.frontiersin.org/Neural_Circuits/editorialboard
http://dx.doi.org/10.3389/fncir.2016.00049
http://crossmark.crossref.org/dialog/?doi=10.3389/fncir.2016.00049&domain=pdf&date_stamp=2016-07-06
http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive
https://creativecommons.org/licenses/by/4.0/
mailto:sabri@ipm.ir
mailto:ehsan.arabzadeh@anu.edu.au
http://dx.doi.org/10.3389/fncir.2016.00049
http://journal.frontiersin.org/article/10.3389/fncir.2016.00049/abstract
http://loop.frontiersin.org/people/43797/overview
http://loop.frontiersin.org/people/275792/overview
http://loop.frontiersin.org/people/46662/overview


Sabri et al. Spatiotemporal Dynamics of Population Activity

cortical neuron receives input through a large number of
synapses from thousands of other cells (Nicholls et al., 2012). It
is thus critical to understand the temporal and spatial structure
of activity within cortical populations as such structures shape
the way individual neurons process sensory information. A
body of work has investigated the functional connectivity in
cortical populations, and how this relates to the underlying
spatial organization of the network (Cohen and Newsome, 2008;
Rothschild et al., 2010; Deco et al., 2011). Specifically, the
local structure of connections as inferred by the spontaneous
population activity was found to determine the evoked response
of neurons to external stimuli (Tsodyks et al., 1999). Collectively,
these studies indicate that the short-range and long-range
interactions among cortical neurons directly impact the capacity
of the population to transmit sensory information.

To gain a quantitative understanding of the spatiotemporal
dynamics of cortical networks, here, we used a 10 × 10 array
of microelectrodes to sample the ongoing population activity of
cortical ensembles. In particular, we investigated the following
questions: What is the temporal relationship between the spiking
activity of cortical neurons? How does this temporal relationship
change with distance between neurons? Do the correlation
profiles during spontaneous activity predict the “noise” and
“signal” correlations in response to sensory stimulation? How
does the strength of correlation between a neuron and the rest of
the population affect the neuron’s capacity to encode the sensory
information?

The rat vibrissal somatosensory cortex (vS1) presents a
cortical organization suitable for this study. The vibrissal system
is anatomically well-characterized (Petersen, 2007; Feldmeyer,
2012; Feldmeyer et al., 2013) and provides an example of
expert sensory processing (Diamond and Arabzadeh, 2013). The
vS1 cortex is arranged in a topographic map of histologically
and physiologically distinct clusters of neurons known as
barrels (Woolsey and Van der Loos, 1970; Welker, 1971). The
dimensions of the 10 × 10 recording array match the columnar
organization of this area of cortex (Arabzadeh et al., 2003), and
thus can be employed to reveal the spatiotemporal dynamics of
activity across adjacent and distant cortical columns.

MATERIAL AND METHODS

Surgery and Neuronal Recording
All experiments were conducted in accordance with international
guidelines and were approved by the Animal Experimentation
Ethics Committee of the Australian National University. Adult
male Wistar rats (n = 3) were anesthetized by urethane
(1.5 g/kg body weight) and were placed on servo-controlled
heating blanket (Harvard instruments) to maintain a steady
body temperature near 37 degrees Celsius. The skull was
fixed in a custom-built stereotaxic frame and a 7 × 7-mm
craniotomy was made to expose the left somatosensory cortex
(center of craniotomy: 2-mm posterior and 6-mm lateral to
bregma). An array of 10 × 10 electrodes (electrode length:
1500 µm; tip-to-tip distance: 400 µm, Utah) was placed above
the somatosensory cortex based on vascular landmarks and the
stereotaxic coordinates (Paxinos and Watson, 1986). The array

was then inserted into the cortex using a pneumatic inserter
(Blackrock) that was set to implant electrodes 1000 µm into the
cortex. The dura was left intact.

Signals from 96 electrodes (4 electrodes were not connected)
were simultaneously amplified, filtered (250–5000 Hz) and were
continuously recorded onto disk at a sampling rate of 30 kHz
(Blackrock microsystems Inc., Utah). We then measured the
range of the filtered signal on each electrode and applied a
threshold of –4.5 standard deviation to detect events. A wavelet-
based algorithm (Quiroga et al., 2004) was used to cluster
spike shapes. For each electrode all spikes were then pooled to
construct the multiunit activity (MUA).

We applied brief periods of single whisker stimulation to
obtain the functional mapping of the electrodes (Figure 1A). For
themain recording session, episodes of spontaneous activity were
interleaved with episodes of sustained stimulation of the whole-
whisker-pad (Figures 2–5). Finally to measure the information
content of each unit, we stimulated the whole-whisker-pad with
brief (25-ms) deflections at different amplitudes (Figure 6A).

Data collected from one rat included only recording of
spontaneous activity. In two other rats, three episodes of
spontaneous activity were interleaved with two episodes of
sustained sensory stimulation. Each episode had a minimum
duration of 12min. Sustained stimulation comprised a
continuous sine wave (frequency: 40Hz; amplitude: 80 or
240 µm) applied to the whole vibrissal pad using a mesh driven
by a piezo-electric wafer. Electrodes with low signal quality in
the first recording episode were excluded from the analyses. This
resulted in 96, 62, and 52 active electrodes in rats 1, 2, and 3. One
episode of recording in rat 2 was excluded from analyses because
of the presence of electrical noise. To quantify the responsiveness
of electrodes, each recording session also included an episode of
intermittent stimulation. Here, brief bipolar deflections (25-ms)
were applied to the vibrissal pad interleaved with 1 s inter-trial
intervals. A range of amplitudes was applied in a pseudorandom
order for 100 repetitions per amplitude. These included 10
amplitudes in rat 1 (0, 10, 20, 40, 60, 80, 120, 160, 200, 240 m)
and 11 amplitudes in rat 2 (0, 5, 10, 20, 40, 60, 80, 120, 160, 200,
240 m). At the end of the recording sessions, specific vibrissae
were stimulated (either individually or in a small number) to
identify the functional map of the array relative to the vS1 cortex
(Figure 1A).

Data Analyses
Data analyses were performed in the IPython Notebook
environment (Pérez and Granger, 2007) using the Python kernel
(www.python.org). Figure 1C shows the calculation procedure
for the spike-triggered probability density function (PDF).
Horizontal brackets indicate example windows of activity on
electrodes #1 and #2, which were aligned by spikes on electrode
#0. We computed the probability distribution of activity on
electrodes #1 and #2 at each time point conditioned to the spikes
on electrode #0. Right panel in Figure 1C plots the probability
distribution of spiking on electrode #1 (green) and #2 (red)
conditional on spikes observed on electrode #0 after convolving
the traces with a 50 ms rectangular window. This spike-
triggered PDF ismathematically the same as the normalized cross
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rat 1

rat 2

FIGURE 1 | Strength and temporal profile of correlated activity

between electrode pairs. (A) To functionally identify the position of the array

relative to the vibrissal cortex, a train of deflections was applied either to

individual vibrissae (E4 and delta, upper panel) or to a small number of

vibrissae (rostral and caudal, lower panel). The response of electrodes are

highlighted with their corresponding color in rat 1 (upper panel) and rat 2

(lower panel). (B) Upper panel: the spiking activity simultaneously recorded on

96 electrodes during 5 s of an example episode. Lower panel: mean firing rate

across all electrodes for the recorded (in black) and shuffled data (in gray). The

histograms to the right compare the distribution of population spiking between

real and shuffled data in this episode. (C) Left panel: an epoch of spiking

activity across three example electrodes. Horizontal brackets illustrate the

windows of activity on electrodes “1” and “2” which are triggered by spikes on

electrode “0” Right panel: probability distribution function (PDF) of spiking on

electrodes “1” (green line) and “2” (red line) relative to spikes on the triggering

electrode “0” (blue vertical line). Three parameters; h, d, and w summarize the

correlation profile for each pair of electrodes.

correlogram. When activities on two electrodes are uncorrelated,
the spike-triggered PDF will exhibit a uniform distribution (i.e.,
the dashed line in Figure 1C, right panel) indicating that the

observation of a spike on one electrode does not alter the
probability of spiking on the other electrode. We defined the
height of this uniform distribution as the chance level (C) and
used it to characterize the strength and profile of spike-triggered
PDFs.

To build the functional dissimilarity matrix across electrode
pairs, we used the following equation:

fij = 1−
hij

√

hii × hjj
(1)

where fij represents the functional distance between electrodes i
and j, hij represents the peak of spike-triggered PDF of electrode
i against electrode j, relative to the chance level (C).

We divided each recording episode into 40-s segments. These
segments were then randomly shuffled individually for each
electrode. This procedure preserves the local temporal profile of
activity within each electrode and diminishes the correlation of
activity across electrodes.

To calculate the noise correlation of responses during
intermittent stimulation episodes, neural responses were defined
as the spike count (0–100 ms post stimulation onset) on
each recording electrode. The same spike count was used
to calculate the mutual information (Ince et al., 2010)
between neural responses and sensory stimuli (Figure 6). The
neuronal response function to sensory stimulation was estimated
during intermittent stimulation episodes (Figure 6A). Neuronal
response was defined as the change in firing rate in the 100
ms window post-stimulus onset relative to the baseline (50ms
window before stimulus onset).

For each of the main findings, the statistical significance
is examined and reported separately for individual recording
episodes (n = 9). Figures 2–6 show the observations in an
example episode while the text quantifies how the findings
generalize across episodes by providing the range of correlation
coefficients and p-values.

RESULTS

To study the spatiotemporal dynamics of neural activity in
a cortical population, we implanted a 10 × 10 array of
microelectrodes in the vibrissal field of the somatosensory
cortex of urethane-anesthetized rats (Figure 1A). We recorded
spontaneous activity and activity evoked in response to sustained
and transient sensory stimulation. Figure 1B illustrates 5 s of
spiking activity across 96 electrodes during an example episode.
As visualized in the raster plot, the neuronal population
exhibits periods of correlated activation: transient increases
in spiking across electrodes interleaved with periods of low
activity. Consistent with previous studies (Luczak et al., 2015),
instances of high and low activity occurred more frequently than
expected by chance (based on comparison to randomly-shuffled
sequences, Figure 1B; see Methods). How is the correlated
population activity reflected in the temporal structure of spiking
between pairs of electrodes?

To quantify the temporal relation of activity across two
electrodes, we computed the probability distribution function

Frontiers in Neural Circuits | www.frontiersin.org 3 July 2016 | Volume 10 | Article 49

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Sabri et al. Spatiotemporal Dynamics of Population Activity

BA C

FIGURE 2 | Interdependence of correlation strength and delay. (A) Violet and orange curves illustrate two estimations of the spike triggered PDF -calculated

with the even and odd spikes on the triggering electrode- for a weakly correlated example pair marked with the brown dot in panels (B,C). (B) Main panel: joint

distribution of h and d for all pairs of electrodes in the example episode. For every pair, the absolute value of d is shown. The histograms to the top and right compare

the distribution of h and d values between real and shuffled data in this episode. (C) Main panel: joint distribution of h and w across electrode pairs in the example

episode. The histogram to the top shows the distribution of w.

(PDF) of spiking on one electrode given the observation of a
spike on another electrode. This spike-triggered PDF is the same
as normalized cross correlogram of two electrodes and provides
an easy method to check the consistency of the correlation
profiles by using subsets of triggering spikes for PDF estimation
(see below). Figure 1C illustrates the probability of spiking on
electrodes #1 and #2 relative to the spikes on electrode #0. Three
parameters summarize the temporal relations of spiking across
two electrodes: (1) The strength of correlation, quantified by h:
the peak of the spike-triggered PDF relative to the chance level
(C, see Methods). (2) The temporal delay in activity across the
two electrodes, quantified by d: the median of the spike-triggered
PDF. (3) The temporal precision of correlated activity, quantified
by w: defined as the width at ¾ peak height of the spike-triggered
PDF. Examining the three parameters h, d, and w for the two
electrode pairs (0–1 and 0–2) revealed specific temporal patterns:
the most probable time of spiking on electrode #1 was 7 ms
after spikes on electrode #0, whereas the most probable time
of spiking on electrode #2 was 23 ms after spikes on electrode
#0. Comparison of parameter h between the two PDFs indicated
that the activity on electrode #0 was more strongly linked to the
activity on electrode #1 than electrode #2.

To verify the consistency of these estimates, we calculated the
spike-triggered PDF separately with the “odd” and “even” spikes
on the triggering electrode (i.e., electrode “0” in Figure 1C). We
compared h values computed with these two non-overlapping
sets of spikes (odd and even) for all pairs of electrodes in every
recording episode. The correlation coefficient of the two sets of
h values was 0.99. Similarly, performing this consistency test on
parameters d and w revealed correlation coefficients of 0.96 and
0.90, indicating that our data set allowed robust estimation of
these three parameters. Figure 2A shows an example of the two
PDFs estimated based on the odd and even spikes. Although
this pair exhibited a relatively weak correlation, the overlap
between the two traces indicates consistent estimation of the

three parameters. In the next section we explore the significance
of these parameters and their interaction.

Parameters d, h, and w are Interdependent
To reveal the dynamics in the space of pairwise correlations,
we investigated the individual and joint distributions of h, d,
and w, and compared them with the distributions obtained from
shuffled data.

For the example episode in Figure 2B, the average h was 1.4C
which was reduced to 0.2C by shuffling. Across all episodes,
the h values ranged from 0.07C to 6.41C (median: 1.28C;
interquartile range: 0.85C–1.82C, n = 9). Data shuffling (see
Methods) reduced the range of h values to a median of 0.19C
(interquartile range: 0.11C–0.34C, n = 9). The distribution of d
values (delay between the activity of electrode pairs) covered a
broader range compared to the shuffled data (p = 2e–60; Levene
test for equivalence of variance, see the distribution of d for the
real and shuffled data in Figure 2B for the example episode). Next
we examined the relationship between the strength of correlation
(h) and the temporal delay (d). Strong correlations occurred
when delay between electrode pairs was short, and correlations
decreased as delays got longer (r= –0.4± 0.12, mean± sd across
recording episodes, n = 9, all p < 0.001, see Figure 2B for the
example episode).

We then quantified the distribution of w and its joint
distribution with h (e.g., Figure 2C). This analysis was limited
to electrode pairs for which the h and/or d were above 95%
of the shuffled distribution (91% of electrode pairs passed this
criteria). As expected, strongly correlated pairs (high h) showed
low w and conversely high values of w corresponded to weak
correlations.

Temporal Dynamics Change with Distance
To investigate how distance between two electrodes might
determine their profile of correlation, we studied the spatial
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A B

C D

FIGURE 3 | Spatial dynamics of pairwise correlations. (A) The mean and

s.e.m of strength of correlation, h, across electrode pairs at each distance. (B)

The mean and s.e.m of temporal delay, d, across electrode pairs at each

distance. (C) The position of electrodes in the functional space built based on

the h values. The functional space is reduced to two dimensions with

multi-dimensional scaling (MDS). Colors of electrodes were assigned based on

their spatial position as shown in the inset array. (D) The mean and s.e.m of

distances in the 2-dimensional functional space, at each anatomical distance.

dynamics of h, d, and w. Overall, by increasing distance the
strength of correlation, h, declined (r = –0.87± 0.06, mean± sd
across recording episodes, n = 9, all p < 0.001; e.g., Figure 3A),
the delays got longer (r = 0.42 ± 0.39, mean ± sd, n = 9,
correlation coefficient was significant in 6 episodes, p < 0.001;
e.g., Figure 3B) and the width increased (r= 0.69± 0.16, mean±
sd, n= 9, all p< 0.001). However, at low distances (<800µm), all
three parameters showed the opposite trend: a rise in h (r > 0.95,
across all episodes, n = 9), and a drop in d (r < –0.91, across all
episodes, n = 9) and w (r < –0.83, across all episodes, n= 9).
Across recording episodes, we observed a systematic spatial
profile of correlations: the strongest correlation, the minimum
delay and the minimum temporal dispersion occurred when the
distance between two electrodes was 800 micrometers.

To what extent does the functional connectivity between
two electrodes determine their physical position on the cortical
surface? We used h as the measure of similarity between
two electrodes and built a dissimilarity matrix that captures
the functional distance between every pair of electrodes (see
Equation 1 in Methods). We applied multidimensional scaling
(MDS; Kruskal, 1964; Pedregosa et al., 2012) to the dissimilarity
matrix and estimated the functional space of electrodes
with different dimensions. Figure 3C visualizes the functional

position of electrodes in a two-dimensional space color-coded to
their anatomical position. The functional position of electrodes
in the MDS space maintains their physical arrangement on the
cortical surface. Figure 3D further verifies the correspondence
between the two maps in terms of the correlation between the
anatomical distances and the functional distances in the two
dimensional MDS space (r = 0.95 for the example episode).
This correlation was reproduced across all recording episodes
(r = 0.90± 0.05, mean ± sd across recording episodes, n = 9,
all p < 0.001). We examined this correlation when representing
the functional space in different dimensions; the most prominent
change in functional space (relative to anatomical space)
occurred in transition from one to two-dimensional space (57
± 31%, mean ± sd across recording episodes, n = 9). For
dimensions higher than two, changes in the relation of functional
space and anatomical space remained relatively small (less than 5
± 3%, mean± sd, n= 9).

Dynamics of Activity at the Population
Level
How are the spikes of individual neurons coordinated relative
to the activity of the whole population? How does the temporal
arrangement of spikes from individual neurons depend on their
spatial arrangement in the network? To address these questions,
we quantified for every electrode, the probability distribution of
population activity of the rest of the network (pooled spiking
of all other electrodes) around spike times of that electrode.
Similar to the pairwise quantifications, the strength of correlation
between the electrode and the rest of population, denoted by hp,
was measured as the peak of the spike-triggered PDF relative
to the chance level (Figure 4A). Across recording episodes, hp
values ranged from 0.42C to 2.46C (median: 1.33C; interquartile
range: 1.06C–1.67C, n = 9), demonstrating moderate to high
level of temporal correlation with the rest of the population.
The hp values remained highly consistent across episodes of
spontaneous activity and sustained stimulation (r = 0.94 ± 0.03,
mean ± sd across all episode pairs, n = 10, all p < 0.001, e.g.,
Figure 4C).

For each electrode, the median of the distribution denoted
by population delay, dp, quantifies the temporal delay of spiking
on that electrode relative to the population activity (Figure 4A
inset). The values of dp for episodes of spontaneous activity
were highly correlated with those for the sustained stimulation
(r = 0.82 ± 0.07, mean ± sd, across all episode pairs, n =

10, all p < 0.001; e.g., Figure 4D). This indicated that the
sequence of activation among electrodes was highly preserved
between the two conditions of spontaneous and sensory evoked
activity. The dp changed systematically from positive (leading
the population) to negative (lagged relative to the population)
values and this clustering was most evident across the rows of the
recording array, which approximately corresponded to transition
from rostral to caudal whiskers (see Figure 4B for the example
episode). We divided the electrodes into two groups based on
the median of dp values across all electrodes: leading group and
delayed group. Anatomical distance of the two groups was 1.23
± 0.47 mm (mean ± sd) across all episodes (n = 9). Shuffling
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BA
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FIGURE 4 | Dynamics of activity at the population level. (A) PDF of

population activity triggered by spikes on the three example electrodes

(electrodes #0, #1, and #2 from Figure 1C). The peak of this PDF relative to

chance level (C), denoted by hp, quantifies the dependence of each electrode

to the pooled activity of population. Inset figure indicates the median of each

PDF, dp, which estimates the delay of each electrode relative to the population

spiking at all other electrodes. (B) Map of electrodes in the example episode

color coded by their dp value. The layout corresponds to the implanted array

in rat 1 (see the functional map in Figure 1A). (C) Comparison of hp values

between two example episodes of spontaneous activity and sustained

stimulation. Every circle represents one electrode. (D) Comparison of dp
values between the same episodes of spontaneous activity and sustained

stimulation as in panel (C).

the position of electrodes reduced this distance to 0.32 ± 0.18
mm (mean ± sd, n = 9). Such systematic relationship with the
position of electrodes was not observed in the values of hp (data
not shown).

Here, we quantified the temporal relations of spiking for
pairs of electrodes (in terms of h and d, Figures 1–3), and at
the population level (in terms of hp and dp, Figure 4). The
measures h and d are bounded to pairs of neurons, and do
not explicitly depict the spatiotemporal patterns among the
whole population as quantified by dp and hp. To generalize
the analysis from the pairwise level to the population level, we
employed a method based on the eigendecomposition of the
correlation matrix h. This is identical to principal component
analysis on the activity of the population: for a population
of N neurons, the eigendecomposition results in a set of N
orthonormal vectors (eigenvectors) andN associated eigenvalues
each of which identifies the contribution of its eigenvector to
represent the functional space (matrix h) in terms of uncorrelated
principal components. We observed that eigenvalues declined
exponentially in their value (e.g., Figure 5A). The first two
eigenvectors captured 47 ± 4% (mean ± sd, across all episodes,
n = 9) of the diversity in the functional space, with the first

eigenvector alone representing 36 ± 4% (mean ± sd, across all
episodes, n = 9). Consistent with our previous results (Adibi
et al., 2013, 2014), the first eigenvalue and its corresponding
eigenvector characterized the overall strength of the correlations
across the population: the first principal component (PC1)
captured the strength of correlation hp (r = 0.96± 0.02, mean±

sd across recording episodes, n= 9, all p< 0.001; e.g., Figure 5B).
The second principal component (PC2), however, represented dp
(r = 0.67 ± 0.11, mean ± sd across recording episodes, n = 9,
all p < 0.001; e.g., Figure 5C). Thus, the pairwise correlations
(functional connectivity map, h) can be explained in terms
of PC1 representing the overall strength of correlations with
population (or hp) and PC2 representing the order of neurons
in the sequence of population activity (dp).

The dimensionally-reduced functional space of PC1 and
PC2 values form a flat functional map of electrodes (e.g.,
Figure 5D). PC1 and PC2 were driven from pairwise correlation
values in h which are a function of the anatomical distance
(Figure 3). Additionally, PC2 was correlated with dp which
in turn correlated with the relative position of electrodes on
cortex (Figure 4B). Thus, the two dimensional functional map
of electrodes resembles the physical map of electrodes on the
array (Figure 5D). This motif was verified by high level of
correlation between pairwise distances in the functional map
and the anatomical map (r = 0.74 ± 0.23, mean ± sd across
recording episodes, n = 9, correlation coefficient was significant
in 8 episodes, p < 0.001, e.g., Figure 5E). Figure 5F illustrates
how a two dimensional space built based on hp and dp values
replicated the anatomical position of electrodes.

Network Dependency and Sensory Coding
Does the strength of correlation with the rest of the network
determine a neuron’s capacity to encode the sensory input?
Figure 4A quantified the strength of correlation between single
electrodes and the population activity pooled across all other
electrodes, as denoted by hp. Here we use the quantity hp as a
measure of network dependence. Figure 6A shows the responses
of the three example electrodes to the range of vibration
amplitudes applied to the whisker pad during the intermittent
stimulation episode. To quantify how well stimulus amplitude
is encoded by spike trains recorded on each electrode, we
computed the mutual information between stimuli and neuronal
responses. Mutual information (Shannon, 1948) quantifies the
amount of information that neuronal responses provide about
the sensory stimuli on a trial-by-trial basis (Cover and Thomas,
1991). After correcting for sampling bias (Ince et al., 2010), the
MI values ranged from 0 to 0.74 bits (across electrodes and
recording sessions, median MI: 0.06 bits, interquartile range:
0.01–0.17 bits, see Figure 6B for the rat 1). Although electrodes
#1 and #2 had similar response functions (green and red curves
in Figure 6A), their MI values were 0.21 bits and 0.35 bits,
respectively. This shows that trial-to-trial variability was lower
in electrode #2 compared to electrode #1. We observed a
modest but significant correlation between network dependence,
hp, and information content of electrodes, MI (r = 0.47 ±

0.04, mean ± sd across recording episodes, n = 9, all p <

0.001). We then divided the electrodes into two groups of
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A

D

FIGURE 5 | The relation between the population correlated activity and the pairwise correlated activity. (A) Eigenvalues resulted from eigendecomposition

analysis on matrix of h values in the example episode. (B) Every circle represents the weight of each electrode in PC1 and its hp value. (C) Every circle represents the

weight of each electrode in PC2 and its dp value. (D), The position of electrodes in a two dimensional space built based on PC1 and PC2 of h matrix. Colors of

electrodes were assigned based on their spatial position as shown in the inset array. (E) The mean and s.e.m of distances in the 2-dimensional PC1-PC2 space, at

each anatomical distance. (F) The position of electrodes in a 2-dimensional space built based on hp and dp. Electrodes are color coded as in panel (D).

“responsive” and “nonresponsive” based on the median of the
MI distribution. Responsive electrodes showed a systematically
higher hp than nonresponsive electrodes (p < 0.001, across
all episodes, n = 9, e.g., Figure 6C). Consistent with this
observation, the pairwise h among responsive pairs was higher
than that among nonresponsive pairs (p< 0.001 across recording
episodes, n = 9, e.g., Figure 6D). For both groups, h values
declined with distance (among responsive pairs r = −0.38 ±

0.28, mean ± sd across recording episodes, n = 9, correlation
coefficient was significant in 5 episodes, p < 0.001 and among
nonresponsive pairs r = −0.84 ± 0.08, mean ± sd across
recording episodes, n = 9, all p < 0.001; inset in Figure 6D).
However, at all distances, higher network dependence (higher h)
corresponded to higher sensory coding capacities.

Previous analysis demonstrated that neurons that were
strongly coupled to the network during their spontaneous
activity also exhibited a higher degree of responsivity to
sensory stimulation. Here we asked whether the fine pairwise
correlation profile during spontaneous activity could also predict
the correlation of sensory evoked responses. We examined
two types of correlation between electrodes, the “signal” and
“noise” correlations. Noise correlation quantifies the trial-to-trial
covariability in response to the same stimulus, whereas signal
correlation quantifies the correlation of response functions across
stimuli (Figure 6A, see Methods). As expected, the strength of
correlation, h, was highly predictive of noise correlation between

two electrodes (r = 0.75 ± 0.03, mean ± sd across recording
episodes, n= 9, all p< 0.001, e.g., Figure 6E). We also found that
h exhibited a weak, but robust relation to signal correlation (r =
0.29± 0.06, mean± sd, across recording episodes, n= 9, all p <

0.001, e.g., Figure 6F). To check if the distance of electrodes could
explain the relation of h and signal correlation, we examined this
relation in different groups of equi-distant pairs of electrodes; the
distribution of correlation coefficients confirmed the consistency
of this relation across all distances (inset in Figure 6F).

DISCUSSION

We investigated the spatiotemporal dynamics of neural activity
in a population of neurons recorded from the vibrissal
somatosensory cortex. The spike-triggered probability
distribution functions illustrated the correlation profile of
electrode pairs in terms of the strength (h), temporal delay
(d), and temporal precision (w) of correlated activity. The
parameters, h, d, and w were reliably estimated within each
recording episode, and maintained their value and relationship
to each other across episodes of spontaneous activity and
sustained sensory stimulation. Highly correlated pairs tended to
exhibit small delays and as the correlation strength decreased the
delay increased. The parameters h, d, and w showed a systematic
relation with distance. Neurons that were strongly coupled to
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A B

C D

E F

FIGURE 6 | Network dependency and sensory coding. (A) Response

functions of the three example electrodes. Colors indicate the same example

electrodes as in Figures 1C, 4A. (B) Mutual Information (MI) between spike

counts on each electrode and the stimulus set in Rat 1. Spike counts were

calculated in a 0-100 ms window post stimulus onset. (C) Every dot

represents one electrode. Electrodes are divided into Responsive (cyan) and

Nonresponsive (gray) groups separated by the median MI value. Top

histograms compare hp distributions for the two groups of electrodes.

(D) Normalized distribution of h values for Responsive pairs (where both

electrodes in a pair were from the Responsive category; cyan) and

Nonresponsive pairs (where both electrodes in a pair were from the

Nonresponsive category; gray). Inset is similar to Figure 3A, only plotting h

separately for the Responsive (cyan) and Nonresponsive pairs (gray). (E) h

values are measured in an example episode of spontaneous activity. The

histograms show the distributions of h values and noise correlations. (F) Same

as panel E, but for signal correlation. Inset histogram: every r value is

calculated within groups of equidistant pairs of electrodes. The distribution of r

values is positive with a mean of 0.3 indicating that the positive correlation

between h and signal correlation is present at all distances.

the network during their spontaneous activity conveyed higher
amounts of information about the sensory stimulus. Finally, the
fine correlation profile of electrode pairs during spontaneous
activity could predict noise and signal correlations during
sensory stimulation.

Rodents use their vibrissae to navigate the environment and
collect information about various aspects of the contacted object
such as its size (Brecht et al., 1997), position (Knutsen et al.,
2006; Knutsen and Ahissar, 2009; O’Connor et al., 2010), or
surface texture (Diamond et al., 2008; Morita et al., 2011). In
the vibrissal area of the primary somatosensory cortex, neurons
generate reliable representations of these aspects by encoding the
kinematics of whisker movements such as high velocity events
that occur during contact with rough surfaces (Arabzadeh et al.,
2005; Wolfe et al., 2008). The overall rate of action potentials of a
single neuron or a neuronal population carries information about
the velocity of vibrations applied to the whiskers (Arabzadeh
et al., 2004) and behavioral experiments indicate that rats are
sensitive to the mean velocity of their whiskers (Gerdjikov
et al., 2010; Adibi and Arabzadeh, 2011; Adibi et al., 2012).
Furthermore, precise timing of action potentials both within
and across individual neurons may carry extra information
about sensory events (Panzeri et al., 2002; Arabzadeh et al.,
2006; Montemurro et al., 2007). Correlations of activity across
individual neurons within the population are found to affect
the transmission of sensory information (Adibi et al., 2013,
2014) as has also been found in other modalities (Cohen and
Kohn, 2011; Ponce-Alvarez et al., 2013). It is however, not
clear to what extent these various coding schemes contribute
to the representation of the sensory environment, and are
“read out” by downstream neurons to influence behavior (Zuo
et al., 2015). When decoding the population activity, the relative
spatial position of neurons, their connectivity and their cellular
and synaptic properties is expected to affect the information
content carried in the population response (Miller et al., 2014;
Okun et al., 2015). Characterizing the spatial and temporal
dynamics of the neuronal population activity can thus identify
the computational constraints on the population activity, and
shed light on the underlying mechanisms of cortical information
processing.

The pattern of population spiking activity in a local circuit
covers a continuum in which two extremes define the state of
cortical activity: the synchronized and desynchronized states.
In the synchronized state the local population shows brief
(50–100ms) periods of synchronized activation separated by
periods of inactivity (Harris and Thiele, 2011). These packets
of population activity in the synchronized state, accompanied
by periods of silence, impose a high level of correlated activity
between adjacent neurons (Mochol et al., 2015; Scholvinck et al.,
2015). During the desynchronized state these segregated packets
do not exist and neurons exhibit lower levels of correlated activity
and thus an enhanced stimulus representation (Marguet and
Harris, 2011; Zagha et al., 2013; Pachitariu et al., 2015). Recent
evidence suggests that different states could simultaneously exist
in different cortical regions (Vyazovskiy et al., 2011; Zagha
et al., 2013). It is not clear how the cortical state affects the
degree of network dependence of cells. Our recordings here were
performed under urethane anesthesia, and thus mainly reflected
the spatiotemporal dynamics of activity in the synchronized state.
Future experiments could apply similar analyses during waking
and examine how various cortical states influence the dynamics
of population activity.
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Previous recordings with multielectrode arrays identified
temporal dynamics of local population of finely separated
neurons that were broadly consistent with our findings here
(Luczak et al., 2007, 2013). At such fine spatial scales, the
relative timing of neurons’ spiking activity exhibited a sequential
temporal structure with systematic patterns that were also
preserved during various states of the network (Luczak et al.,
2007, 2013; but see Pachitariu et al., 2015). Here we investigated
the spatiotemporal dynamics of activity among distant neurons.
The 400 µm distance between adjacent electrodes in the Utah
array is similar to the diameter of cortical columns which are
considered the computational modules in primary sensory cortex
and other cortical areas (Mountcastle, 1957; Hubel et al., 1977;
Buxhoeveden and Casanova, 2002; Burgalossi and Brecht, 2014).
Our findings therefore characterize the spatiotemporal dynamics
of activity across adjacent and distant cortical columns.

We found that the strength of correlation decreased with
distance. This finding is consistent with the general observation
that the correlation strength declines with distance in different
areas of cortex (Smith and Kohn, 2008; Rothschild et al., 2010;
Solomon et al., 2014). However, we also observed an initial rise in
correlation at short distances (up to 800 µm) which was followed
by a steady drop in correlation (Figure 3A). Consistent with
this observation, Ajima and Tanaka (2006) reported that in L2/3
vibrissal cortex, fast inhibitory connections decline more rapidly
with distance than do the excitatory connections. The original
rise can also be due to the stronger connections between adjacent
barrels compared to the barrel and septum connectivity, observed
in the supragranular layers (Alloway, 2008).

A powerful method for determining population dynamics
is eigendecomposition analysis of the neuronal space. Reyes-
Puerta and colleagues applied this method to population
activity in the vS1 recorded with multi-shank linear arrays
(Reyes-Puerta et al., 2015a; see also Adibi et al., 2013,
2014). Their eigendecompostion, performed on the spike count
correlation matrix, revealed that a small number of dimensions
summarize variances in the space of population activity. Our
eigendecomposition analysis, performed on the matrix of h
values, further confirms these results (Figure 5A). Moreover,
we found that the contribution of each unit to the first and
second principal components was captured by the unit’s hp and
dp values, respectively, (Figures 5B,C). The orderly arrangement
of dp values across the cortical surface (Figure 4B) suggests
a directional flow of activity, and this is consistent with the
eigendecomposition analysis of Reyes-Puerta et al. (2015a)
demonstrating the propagation of activity along the barrel rows
(see also Petersen et al., 2003; Civillico and Contreras, 2012).

We recorded neural population activity across a 3.6 × 3.6
mm2 area of the rat cortex. Given the complex three-dimensional
architecture of cortical columns (Egger et al., 2012) and the

cortical curvature, the recordings could not be attributed to
specific columns, layers, and cell types. Therefore, here we
have assumed an oversimplified model of the cortex whereby
all analyses focused on the spatial distance across electrode
tips without including the three-dimensional structure of the
cortex and the differences across neurons. To better understand
the dynamics of sensory processing, a powerful approach is to

identify how a neuron’s cell type and excitatory/inhibitory nature
determine its network dependence and information content
(Reyes-Puerta et al., 2015b). Future experiments could combine
population recordings using linear arrays with juxta-cellular
recording/labeling (Pinault, 2011) to better establish the network
coupling for morphologically identified neurons.

We observed that the fine correlation profile of electrode
pairs during spontaneous activity could predict noise correlation
as well as signal correlation during sensory stimulation.
Furthermore, the strength of correlation between an electrode
and the rest of the network determined the amount of
information it carried about the sensory input. This is consistent
with recent findings by Okun and colleagues who reported
that more responsive neurons (to sensory or optogenetics
stimulation) were more coupled to the network (Okun et al.,
2015). Okun et al. focused on a population of neurons recorded
in 600 µm of rat visual cortex. Our recordings covered a 3.6
× 3.6 mm2 area, and mainly included multi-unit activity from
clusters of neurons in the vS1 cortex (Figure 1A). The similarity
of findings suggests that the relation between network coupling
and sensory coding capacity may generalize across cortical areas
and be present at multiple scales.
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