80 research outputs found

    A New 4-DOF Robot for Rehabilitation of Knee and Ankle-Foot Complex: Simulation and Experiment

    Full text link
    Stationary robotic trainers are lower limb rehab robots which often incorporate an exoskeleton attached to a stationary base. The issue observed in the stationery trainers for simultaneous knee and ankle-foot complex joints is that they restrict the natural motion of ankle-foot in the rehab trainings due to the insufficient Degrees of Freedom (DOFs) of these trainers. A new stationary knee-ankle-foot rehab robot with all necessary DOFs is developed here. A typical rehab training is first implemented in simulation, and then tested on a healthy subject. Results show that the proposed system functions naturally and meets the requirements of the desired rehab training.Comment: 23 pages, 14 figure

    Preliminary evaluation of a robotic apparatus for the analysis of passive glenohumeral joint kinematics

    Get PDF
    Background: The shoulder has the greatest range of motion of any joint in the human body. This is due, in part, to the complex interplay between the glenohumeral (GH) joint and the scapulothoracic (ST) articulation. Currently, our ability to study shoulder kinematics is limited, because existing models isolate the GH joint and rely on manual manipulation to create motion, and have low reproducibility. Similarly, most established techniques track shoulder motion discontinuously with limited accuracy. Methods: To overcome these problems, we have designed a novel system in which the shoulder girdle is studied intact, incorporating both GH and ST motions. In this system, highly reproducible trajectories are created using a robotic actuator to control the intact shoulder girdle. High-speed cameras are employed to track retroreflective bone markers continuously. Results: We evaluated this automated system’s capacity to reproducibly capture GH translation in intact and pathologic shoulder conditions. A pair of shoulders (left and right) were tested during forward elevation at baseline, with a winged scapula, and after creation of a full thickness supraspinatus tear. Discussion The system detected differences in GH translations as small as 0.5 mm between different conditions. For each, three consecutive trials were performed and demonstrated high reproducibility and high precision

    Hierarchical analysis and multi-scale modelling of rat cortical and trabecular bone

    Get PDF
    The aim of this study was to explore the hierarchical arrangement of structural properties in cortical and trabecular bone and to determine a mathematical model that accurately predicts the tissue's mechanical properties as a function of these indices. By using a variety of analytical techniques, we were able to characterize the structural and compositional properties of cortical and trabecular bones, as well as to determine the suitable mathematical model to predict the tissue's mechanical properties using a continuum micromechanics approach. Our hierarchical analysis demonstrated that the differences between cortical and trabecular bone reside mainly at the micro- and ultrastructural levels. By gaining a better appreciation of the similarities and differences between the two bone types, we would be able to provide a better assessment and understanding of their individual roles, as well as their contribution to bone health overall
    • 

    corecore