11,052 research outputs found

    Recent advances and open challenges in percolation

    Full text link
    Percolation is the paradigm for random connectivity and has been one of the most applied statistical models. With simple geometrical rules a transition is obtained which is related to magnetic models. This transition is, in all dimensions, one of the most robust continuous transitions known. We present a very brief overview of more than 60 years of work in this area and discuss several open questions for a variety of models, including classical, explosive, invasion, bootstrap, and correlated percolation

    Magnetic and superconducting instabilities in the periodic Anderson model: an RPA stud

    Full text link
    We study the magnetic and superconducting instabilities of the periodic Anderson model with infinite Coulomb repulsion U in the random phase approximation. The Neel temperature and the superconducting critical temperature are obtained as functions of electronic density (chemical pressure) and hybridization V (pressure). It is found that close to the region where the system exhibits magnetic order the critical temperature T_c is much smaller than the Neel temperature, in qualitative agreement with some T_N/T_c ratios found for some heavy-fermion materials. In our study, all the magnetic and superconducting physical behaviour of the system has its origin in the fluctuating boson fields implementing the infinite on-site Coulomb repulsion among the f-electrons.Comment: 9 pages, 2 figure

    Efeito do processamento térmico na composição química, compostos bioativos e atividade antioxidante de cultivares de feijão-caupi.

    Get PDF
    This study aimed to determine the effect of cooking on the centesimal compositions, the content of bioactive compounds, and antioxidant activities in beans of the cowpea cultivars. The beans were cooked without soaking (1:5 w/v) in a pressure cooker for 780 seconds..

    Neutron Charge Radius: Relativistic Effects and the Foldy Term

    Full text link
    The neutron charge radius is studied within a light-front model with different spin coupling schemes and wave functions. The cancellation of the contributions from the Foldy term and Dirac form factor to the neutron charge form factor is verified for large nucleon sizes and it is independent of the detailed form of quark spin coupling and wave function. For the physical nucleon our results for the contribution of the Dirac form factor to the neutron radius are insensitive to the form of the wave function while they strongly depend on the quark spin coupling scheme.Comment: 12 pages, 5 figures, Latex, Int. J. Mod. Phys.
    corecore