11,232 research outputs found

    A theorem regarding families of topologically non-trivial fermionic systems

    Full text link
    We introduce a Hamiltonian for fermions on a lattice and prove a theorem regarding its topological properties. We identify the topological criterion as a Z2\mathbb{Z}_2- topological invariant p(k)p(\textbf{k}) (the Pfaffian polynomial). The topological invariant is not only the first Chern number, but also the sign of the Pfaffian polynomial coming from a notion of duality. Such Hamiltonian can describe non-trivial Chern insulators, single band superconductors or multiorbital superconductors. The topological features of these families are completely determined as a consequence of our theorem. Some specific model examples are explicitly worked out, with the computation of different possible topological invariants.Comment: 6 page

    Finding the optimal nets for self-folding Kirigami

    Get PDF
    Three-dimensional shells can be synthesized from the spontaneous self-folding of two-dimensional templates of interconnected panels, called nets. However, some nets are more likely to self-fold into the desired shell under random movements. The optimal nets are the ones that maximize the number of vertex connections, i.e., vertices that have only two of its faces cut away from each other in the net. Previous methods for finding such nets are based on random search and thus do not guarantee the optimal solution. Here, we propose a deterministic procedure. We map the connectivity of the shell into a shell graph, where the nodes and links of the graph represent the vertices and edges of the shell, respectively. Identifying the nets that maximize the number of vertex connections corresponds to finding the set of maximum leaf spanning trees of the shell graph. This method allows not only to design the self-assembly of much larger shell structures but also to apply additional design criteria, as a complete catalog of the maximum leaf spanning trees is obtained.Comment: 6 pages, 5 figures, Supplemental Material, Source Cod

    Recent advances and open challenges in percolation

    Full text link
    Percolation is the paradigm for random connectivity and has been one of the most applied statistical models. With simple geometrical rules a transition is obtained which is related to magnetic models. This transition is, in all dimensions, one of the most robust continuous transitions known. We present a very brief overview of more than 60 years of work in this area and discuss several open questions for a variety of models, including classical, explosive, invasion, bootstrap, and correlated percolation
    corecore