11,695 research outputs found

    Efficient algorithm to study interconnected networks

    Full text link
    Interconnected networks have been shown to be much more vulnerable to random and targeted failures than isolated ones, raising several interesting questions regarding the identification and mitigation of their risk. The paradigm to address these questions is the percolation model, where the resilience of the system is quantified by the dependence of the size of the largest cluster on the number of failures. Numerically, the major challenge is the identification of this cluster and the calculation of its size. Here, we propose an efficient algorithm to tackle this problem. We show that the algorithm scales as O(N log N), where N is the number of nodes in the network, a significant improvement compared to O(N^2) for a greedy algorithm, what permits studying much larger networks. Our new strategy can be applied to any network topology and distribution of interdependencies, as well as any sequence of failures.Comment: 5 pages, 6 figure

    Gaussian model of explosive percolation in three and higher dimensions

    Full text link
    The Gaussian model of discontinuous percolation, recently introduced by Ara\'ujo and Herrmann [Phys. Rev. Lett., 105, 035701 (2010)], is numerically investigated in three dimensions, disclosing a discontinuous transition. For the simple-cubic lattice, in the thermodynamic limit, we report a finite jump of the order parameter, J=0.415±0.005J=0.415 \pm 0.005. The largest cluster at the threshold is compact, but its external perimeter is fractal with fractal dimension dA=2.5±0.2d_A = 2.5 \pm 0.2. The study is extended to hypercubic lattices up to six dimensions and to the mean-field limit (infinite dimension). We find that, in all considered dimensions, the percolation transition is discontinuous. The value of the jump in the order parameter, the maximum of the second moment, and the percolation threshold are analyzed, revealing interesting features of the transition and corroborating its discontinuous nature in all considered dimensions. We also show that the fractal dimension of the external perimeter, for any dimension, is consistent with the one from bridge percolation and establish a lower bound for the percolation threshold of discontinuous models with finite number of clusters at the threshold

    Neutron Charge Radius: Relativistic Effects and the Foldy Term

    Full text link
    The neutron charge radius is studied within a light-front model with different spin coupling schemes and wave functions. The cancellation of the contributions from the Foldy term and Dirac form factor to the neutron charge form factor is verified for large nucleon sizes and it is independent of the detailed form of quark spin coupling and wave function. For the physical nucleon our results for the contribution of the Dirac form factor to the neutron radius are insensitive to the form of the wave function while they strongly depend on the quark spin coupling scheme.Comment: 12 pages, 5 figures, Latex, Int. J. Mod. Phys.

    Shock waves on complex networks

    Get PDF
    Power grids, road maps, and river streams are examples of infrastructural networks which are highly vulnerable to external perturbations. An abrupt local change of load (voltage, traffic density, or water level) might propagate in a cascading way and affect a significant fraction of the network. Almost discontinuous perturbations can be modeled by shock waves which can eventually interfere constructively and endanger the normal functionality of the infrastructure. We study their dynamics by solving the Burgers equation under random perturbations on several real and artificial directed graphs. Even for graphs with a narrow distribution of node properties (e.g., degree or betweenness), a steady state is reached exhibiting a heterogeneous load distribution, having a difference of one order of magnitude between the highest and average loads. Unexpectedly we find for the European power grid and for finite Watts-Strogatz networks a broad pronounced bimodal distribution for the loads. To identify the most vulnerable nodes, we introduce the concept of node-basin size, a purely topological property which we show to be strongly correlated to the average load of a node
    corecore