39 research outputs found

    Spatiotemporal changes in along-tract profilometry of cerebellar peduncles in cerebellar mutism syndrome

    Get PDF
    Cerebellar mutism syndrome, characterised by mutism, emotional lability and cerebellar motor signs, occurs in up to 39% of children following resection of medulloblastoma, the most common malignant posterior fossa tumour of childhood. Its pathophysiology remains unclear, but prior studies have implicated damage to the superior cerebellar peduncles. In this study, the objective was to conduct high-resolution spatial profilometry of the cerebellar peduncles and identify anatomic biomarkers of cerebellar mutism syndrome. In this retrospective study, twenty-eight children with medulloblastoma (mean age 8.8 ± 3.8 years) underwent diffusion MRI at four timepoints over one year. Forty-nine healthy children (9.0 ± 4.2 years), scanned at a single timepoint, served as age- and sex-matched controls. Automated Fibre Quantification was used to segment cerebellar peduncles and compute fractional anisotropy (FA) at 30 nodes along each tract. Thirteen patients developed cerebellar mutism syndrome. FA was significantly lower in the distal third of the left superior cerebellar peduncle pre-operatively in all patients compared to controls (FA in proximal third 0.228, middle and distal thirds 0.270, p = 0.01, Cohen's d = 0.927). Pre-operative differences in FA did not predict cerebellar mutism syndrome. However, post-operative reductions in FA were highly specific to the distal left superior cerebellar peduncle, and were most pronounced in children with cerebellar mutism syndrome compared to those without at the 1–4 month follow up (0.325 vs 0.512, p = 0.042, d = 1.36) and at the 1-year follow up (0.342, vs 0.484, p = 0.038, d = 1.12). High spatial resolution cerebellar profilometry indicated a site-specific alteration of the distal segment of the superior cerebellar peduncle seen in cerebellar mutism syndrome which may have important surgical implications in the treatment of these devastating tumours of childhood

    Vision function in children 10 years after grade 3 or 4 intraventricular haemorrhage with ventricular dilation: A masked prospective study

    Get PDF
    Aim We examined children 10 to 11 years after grade 3 or 4 intraventricular haemorrhage and ventricular dilation (IVHVD) and investigated whether the grade of IVHVD affected their visual outcome. We explored associations between visual outcomes with cognitive outcomes and extra support at school. Method The visual examinations were part of a 10-year follow-up study for children in a randomized trial. Testers followed a protocol and were masked to whether the child had experienced grade 3 or grade 4 IVHVD and all other data. Results Thirty-two children were tested: 24 were male and mean (standard deviation) age was 10 years 5 months (1 year 2 months); range 8 years 9 months to 12 years 9 months. All had at least one visual impairment. The median (interquartile range) number of impairments per child was six (six to nine) for children who experienced a grade 4 IVHVD compared with three (two to four) for children who experienced a grade 3 IVHVD (p = 0.003). Each extra vision impairment per child was associated with increased educational support at school, after adjustment for developmental age equivalence (odds ratio = 1.7 [95% confidence interval 1.1–2.6], p = 0.015). Interpretation Children who experience grade 3 or 4 IVHVD have a high level of visual morbidity at age 10 to 11 years. These children may have unmet visual needs and their outcomes might improve if these needs could be addressed. What this paper adds Parent-reported questionnaire responses underestimated directly assessed visual morbidity. Grade 4 intraventricular haemorrhage and ventricular dilatation (IVHVD) was followed by more vision impairments than grade 3 IVHVD. Simple tests of visual perceptual skills correlated with the neuropsychology tests. Children with supranuclear eye movement disorders were more likely to be receiving extra help at school. Each additional visual impairment increased the likelihood of extra educational support

    Ten-year follow-up of a randomised trial of drainage, irrigation and fibrinolytic therapy (DRIFT) in infants with post-haemorrhagic ventricular dilatation

    Get PDF
    Background: The drainage, irrigation and fibrinolytic therapy (DRIFT) trial, conducted in 2003–6, showed a reduced rate of death or severe disability at 2 years in the DRIFT compared with the standard treatment group, among preterm infants with intraventricular haemorrhage (IVH) and post-haemorrhagic ventricular dilatation. Objectives: To compare cognitive function, visual and sensorimotor ability, emotional well-being, use of specialist health/rehabilitative and educational services, neuroimaging, and economic costs and benefits at school age. Design: Ten-year follow-up of a randomised controlled trial. Setting: Neonatal intensive care units (Bristol, Katowice, Glasgow and Bergen). Participants: Fifty-two of the original 77 infants randomised. Interventions: DRIFT or standard therapy (cerebrospinal fluid tapping). Main outcome measures: Primary – cognitive disability. Secondary – vision; sensorimotor disability; emotional/behavioural function; education; neurosurgical sequelae on magnetic resonance imaging; preference-based measures of health-related quality of life; costs of neonatal treatment and of subsequent health care in childhood; health and social care costs and impact on family at age 10 years; and a decision analysis model to estimate the cost-effectiveness of DRIFT compared with standard treatment up to the age of 18 years. Results: By 10 years of age, 12 children had died and 13 were either lost to follow-up or had declined to participate. A total of 52 children were assessed at 10 years of age (DRIFT, n = 28; standard treatment, n = 24). Imbalances in gender and birthweight favoured the standard treatment group. The unadjusted mean cognitive quotient (CQ) score was 69.3 points [standard deviation (SD) 30.1 points] in the DRIFT group compared with 53.7 points (SD 35.7 points) in the standard treatment group, a difference of 15.7 points, 95% confidence interval (CI) –2.9 to 34.2 points; p = 0.096. After adjusting for the prespecified covariates (gender, birthweight and grade of IVH), this evidence strengthened: children who received DRIFT had a CQ advantage of 23.5 points (p = 0.009). The binary outcome, alive without severe cognitive disability, gave strong evidence that DRIFT improved cognition [unadjusted odds ratio (OR) 3.6 (95% CI 1.2 to 11.0; p = 0.026) and adjusted OR 10.0 (95% CI 2.1 to 46.7; p = 0.004)]; the number needed to treat was three. No significant differences were found in any secondary outcomes. There was weak evidence that DRIFT reduced special school attendance (adjusted OR 0.27, 95% CI 0.07 to 1.05; p = 0.059). The neonatal stay (unadjusted mean difference £6556, 95% CI –£11,161 to £24,273) and subsequent hospital care (£3413, 95% CI –£12,408 to £19,234) costs were higher in the DRIFT arm, but the wide CIs included zero. The decision analysis model indicated that DRIFT has the potential to be cost-effective at 18 years of age. The incremental cost-effectiveness ratio (£15,621 per quality-adjusted life-year) was below the National Institute for Health and Care Excellence threshold. The cost-effectiveness results were sensitive to adjustment for birthweight and gender. Limitations: The main limitations are the sample size of the trial and that important characteristics were unbalanced at baseline and at the 10-year follow-up. Although the analyses conducted here were prespecified in the analysis plan, they had not been prespecified in the original trial registration. Conclusions: DRIFT improves cognitive function when taking into account birthweight, grade of IVH and gender. DRIFT is probably effective and, given the reduction in the need for special education, has the potential to be cost-effective as well. A future UK multicentre trial is required to assess efficacy and safety of DRIFT when delivered across multiple sites. Trial registration: Current Controlled Trials ISRCTN80286058. Funding: This project was funded by the NIHR Health Technology Assessment programme and will be published in full in Health Technology Assessment; Vol. 23, No. 4. See the NIHR Journals Library website for further project information. The DRIFT trial and 2-year follow-up was funded by Cerebra and the James and Grace Anderson Trust

    Tumour compartment transcriptomics demonstrates the activation of inflammatory and odontogenic programmes in human adamantinomatous craniopharyngioma and identifies the MAPK/ERK pathway as a novel therapeutic target

    Get PDF
    Adamantinomatous craniopharyngiomas (ACPs) are clinically challenging tumours, the majority of which have activating mutations in CTNNB1. They are histologically complex, showing cystic and solid components, the latter comprised of different morphological cell types (e.g. β-catenin-accumulating cluster cells and palisading epithelium), surrounded by a florid glial reaction with immune cells. Here, we have carried out RNA sequencing on 18 ACP samples and integrated these data with an existing ACP transcriptomic dataset. No studies so far have examined the patterns of gene expression within the different cellular compartments of the tumour. To achieve this goal, we have combined laser capture microdissection with computational analyses to reveal groups of genes that are associated with either epithelial tumour cells (clusters and palisading epithelium), glial tissue or immune infiltrate. We use these human ACP molecular signatures and RNA-Seq data from two ACP mouse models to reveal that cell clusters are molecularly analogous to the enamel knot, a critical signalling centre controlling normal tooth morphogenesis. Supporting this finding, we show that human cluster cells express high levels of several members of the FGF, TGFB and BMP families of secreted factors, which signal to neighbouring cells as evidenced by immunostaining against the phosphorylated proteins pERK1/2, pSMAD3 and pSMAD1/5/9 in both human and mouse ACP. We reveal that inhibiting the MAPK/ERK pathway with trametinib, a clinically approved MEK inhibitor, results in reduced proliferation and increased apoptosis in explant cultures of human and mouse ACP. Finally, we analyse a prominent molecular signature in the glial reactive tissue to characterise the inflammatory microenvironment and uncover the activation of inflammasomes in human ACP. We validate these results by immunostaining against immune cell markers, cytokine ELISA and proteome analysis in both solid tumour and cystic fluid from ACP patients. Our data support a new molecular paradigm for understanding ACP tumorigenesis as an aberrant mimic of natural tooth development and opens new therapeutic opportunities by revealing the activation of the MAPK/ERK and inflammasome pathways in human ACP. KEYWORDS: Craniopharyngioma; IL1-β; Inflammasome; MAPK/ERK pathway; Odontogenesis; Paracrine signalling; Trametini

    A newborn piglet survival model of post-hemorrhagic ventricular dilatation

    No full text
    corecore