47 research outputs found

    Longitudinal EEG power in the first postnatal year differentiates autism outcomes

    Get PDF
    An aim of autism spectrum disorder (ASD) research is to identify early biomarkers that inform ASD pathophysiology and expedite detection. Brain oscillations captured in electroencephalography (EEG) are thought to be disrupted as core ASD pathophysiology. We leverage longitudinal EEG power measurements from 3 to 36 months of age in infants at low- and high-risk for ASD to test how and when power distinguishes ASD risk and diagnosis by age 3-years. Power trajectories across the first year, second year, or first three years postnatally were submitted to data-driven modeling to differentiate ASD outcomes. Power dynamics during the first postnatal year best differentiate ASD diagnoses. Delta and gamma frequency power trajectories consistently distinguish infants with ASD diagnoses from others. There is also a developmental shift across timescales towards including higher-frequency power to differentiate outcomes. These findings reveal the importance of developmental timing and trajectory in understanding pathophysiology and classifying ASD outcomes.R01 DC010290 - NIDCD NIH HHS; T32 MH112510 - NIMH NIH HHS; U54 HD090255 - NICHD NIH HHSPublished versio

    EEG phase-amplitude coupling strength and phase preference: association with age over the first three years after birth

    Get PDF
    Phase-amplitude coupling (PAC), the coupling of the phase of slower electrophysiological oscillations with the amplitude of faster oscillations, is thought to facilitate dynamic integration of neural activity in the brain. Although the brain undergoes dramatic change and development during the first few years of life, how PAC changes through this developmental period has not been extensively studied. Here, we examined PAC through electroencephalography (EEG) data collected during an awake, eyes-open EEG collection paradigm in 98 children between the ages of three months and three years. We employed non-parametric clustering methods to identify areas of significant PAC across a range of frequency pairs and electrode locations, and examined how PAC strength and phase preference develops in these areas. We found that PAC, primarily between the α-β and γ frequencies, was positively correlated with age from early infancy to early childhood (p = 2.035 × 10-6). Additionally, we found γ over anterior electrodes coupled with the rising phase of the α-β waveform, while γ over posterior electrodes coupled with the falling phase of the α-β waveform; this regionalized phase preference became more prominent with age. This opposing trend may reflect each region's specialization toward feedback or feedforward processing, respectively, suggesting opportunities for back translation in future studies.P50 HD105351 - NICHD NIH HHS; R21 DC008637 - NIDCD NIH HHSPublished versio

    Shifted phase of EEG cross-frequency coupling in individuals with Phelan-McDermid syndrome

    Get PDF
    Background Phelan-McDermid Syndrome (PMS) is a rare condition caused by deletion or mutation of the SHANK3 gene. Individuals with PMS frequently present with intellectual disability, autism spectrum disorder, and other neurodevelopmental challenges. Electroencephalography (EEG) can provide a window into network-level function in PMS. Methods Here, we analyze EEG data collected across multiple sites in individuals with PMS (n = 26) and typically developing individuals (n = 15). We quantify oscillatory power, alpha-gamma phase-amplitude coupling strength, and phase bias, a measure of the phase of cross frequency coupling thought to reflect the balance of feedforward (bottom-up) and feedback (top-down) activity. Results We find individuals with PMS display increased alpha-gamma phase bias (U = 3.841, p < 0.0005), predominantly over posterior electrodes. Most individuals with PMS demonstrate positive overall phase bias while most typically developing individuals demonstrate negative overall phase bias. Among individuals with PMS, strength of alpha-gamma phase-amplitude coupling was associated with Sameness, Ritualistic, and Compulsive behaviors as measured by the Repetitive Behavior Scales-Revised (Beta = 0.545, p = 0.011). Conclusions Increased phase bias suggests potential circuit-level mechanisms underlying phenotype in PMS, offering opportunities for back-translation of findings into animal models and targeting in clinical trials

    EEG power at 3 months in infants at high familial risk for autism

    No full text
    Background: Alterations in brain development during infancy may precede the behavioral manifestation of developmental disorders. Infants at increased risk for autism are also at increased risk for other developmental disorders, including, quite commonly, language disorders. Here we assess the extent to which electroencephalographic (EEG) differences in infants at high versus low familial risk for autism are present by 3 months of age, and elucidate the functional significance of EEG power at 3 months in predicting later development. Methods: EEG data were acquired at 3 months in infant siblings of children with autism (high risk; n = 29) and infant siblings of typically developing children (low risk; n = 19) as part of a prospective, longitudinal investigation. Development across multiple domains was assessed at 6, 9, 12, 18, 24, and 36 months. Diagnosis of autism was determined at 18–36 months. We assessed relationships between 3-month-olds’ frontal EEG power and autism risk, autism outcome, language development, and development in other domains. Results: Infants at high familial risk for autism had reduced frontal power at 3 months compared to infants at low familial risk for autism, across several frequency bands. Reduced frontal high-alpha power at 3 months was robustly associated with poorer expressive language at 12 months. Conclusions: Reduced frontal power at 3 months may indicate increased risk for reduced expressive language skills at 12 months. This finding aligns with prior studies suggesting reduced power is a marker for atypical brain function, and infants at familial risk for autism are also at increased risk for altered developmental functioning in non-autism-specific domains

    Presentation_1_BEAPP: The Batch Electroencephalography Automated Processing Platform.zip

    No full text
    <p>Electroencephalography (EEG) offers information about brain function relevant to a variety of neurologic and neuropsychiatric disorders. EEG contains complex, high-temporal-resolution information, and computational assessment maximizes our potential to glean insight from this information. Here we present the Batch EEG Automated Processing Platform (BEAPP), an automated, flexible EEG processing platform incorporating freely available software tools for batch processing of multiple EEG files across multiple processing steps. BEAPP does not prescribe a specified EEG processing pipeline; instead, it allows users to choose from a menu of options for EEG processing, including steps to manage EEG files collected across multiple acquisition setups (e.g., for multisite studies), minimize artifact, segment continuous and/or event-related EEG, and perform basic analyses. Overall, BEAPP aims to streamline batch EEG processing, improve accessibility to computational EEG assessment, and increase reproducibility of results.</p

    DataSheet1.PDF

    No full text
    <p>Electroenchephalography (EEG) recordings collected with developmental populations present particular challenges from a data processing perspective. These EEGs have a high degree of artifact contamination and often short recording lengths. As both sample sizes and EEG channel densities increase, traditional processing approaches like manual data rejection are becoming unsustainable. Moreover, such subjective approaches preclude standardized metrics of data quality, despite the heightened importance of such measures for EEGs with high rates of initial artifact contamination. There is presently a paucity of automated resources for processing these EEG data and no consistent reporting of data quality measures. To address these challenges, we propose the Harvard Automated Processing Pipeline for EEG (HAPPE) as a standardized, automated pipeline compatible with EEG recordings of variable lengths and artifact contamination levels, including high-artifact and short EEG recordings from young children or those with neurodevelopmental disorders. HAPPE processes event-related and resting-state EEG data from raw files through a series of filtering, artifact rejection, and re-referencing steps to processed EEG suitable for time-frequency-domain analyses. HAPPE also includes a post-processing report of data quality metrics to facilitate the evaluation and reporting of data quality in a standardized manner. Here, we describe each processing step in HAPPE, perform an example analysis with EEG files we have made freely available, and show that HAPPE outperforms seven alternative, widely-used processing approaches. HAPPE removes more artifact than all alternative approaches while simultaneously preserving greater or equivalent amounts of EEG signal in almost all instances. We also provide distributions of HAPPE's data quality metrics in an 867 file dataset as a reference distribution and in support of HAPPE's performance across EEG data with variable artifact contamination and recording lengths. HAPPE software is freely available under the terms of the GNU General Public License at https://github.com/lcnhappe/happe.</p
    corecore