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Abstract

Phase-amplitude coupling (PAC), the coupling of the phase of slower electrophysiological oscillations with the
amplitude of faster oscillations, is thought to facilitate dynamic integration of neural activity in the brain.
Although the brain undergoes dramatic change and development during the first few years of life, how PAC
changes through this developmental period has not been extensively studied. Here, we examined PAC through
electroencephalography (EEG) data collected during an awake, eyes-open EEG collection paradigm in 98 chil-
dren between the ages of threemonths and three years. We employed non-parametric clustering methods to
identify areas of significant PAC across a range of frequency pairs and electrode locations, and examined how
PAC strength and phase preference develops in these areas. We found that PAC, primarily between the a-b
and g frequencies, was positively correlated with age from early infancy to early childhood (p=2.035� 10�6).
Additionally, we found g over anterior electrodes coupled with the rising phase of the a-b waveform, while g
over posterior electrodes coupled with the falling phase of the a-b waveform; this regionalized phase prefer-
ence became more prominent with age. This opposing trend may reflect each region’s specialization toward
feedback or feedforward processing, respectively, suggesting opportunities for back translation in future
studies.
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Significance Statement

The brain undergoes significant development during infancy and early childhood, enabling the emergence
of higher-level cognition. Phase-amplitude coupling (PAC) is thought to support the integration of informa-
tion within the brain. Our data suggest PAC increases from three months to three years of age. We addition-
ally report the anterior and posterior electrodes show opposing forms of PAC; this regional phase
preference also increases with age of electroencephalography (EEG) collection. These findings help set the
stage for future analyses of PAC in young children with neurodevelopmental disorders, in which develop-
ment of biomarkers during early life is a burgeoning field and measures of cross-frequency coupling may
offer new promise.
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Introduction
Dynamic integration of neural activity across various

timescales is a critical component of healthy brain func-
tion. Oscillatory brain activity, created by the synchronous
firing of large ensembles of neurons, can stem from a vari-
ety of underlying mechanisms and index a variety of cog-
nitive processes (Kopell et al., 2014). In the field of
neurodevelopment, measurement of oscillatory activity
within specific frequency bands has thus been of long-
standing interest (Saby and Marshall, 2012). Cross-fre-
quency coupling, which describes the interaction
between different oscillatory frequencies, has gained in-
terest recently given its potential to integrate neural infor-
mation in a manner that is functionally relevant to both
typical and atypical brain function (Canolty and Knight,
2010).
One form of cross-frequency coupling is phase-ampli-

tude coupling (PAC), in which the phase of the low-fre-
quency activity modulates the amplitude of the high-
frequency activity. Increasing evidence implicates PAC in
a variety of important functional processes. PAC strength
and location has been shown to shift with task demands
(Voytek, 2010). Additionally, alterations in PAC have been
found in a variety of brain disorders, including schizophre-
nia, autism, attention deficit hyperactivity disorder, and
Parkinson’s (Salimpour and Anderson, 2019), highlighting
the importance of PAC for healthy brain functioning.
Moreover, underlying characteristics of PAC may reflect

an area’s functional configuration within neural networks.
PAC phase max, or the phase of the low-frequency wave-
form corresponding to the largest amplitude of the high-
frequency waveform, has been found to differ by cortical
layer (Sotero et al., 2015), interneuron function (Port et al.,
2019), depth of anesthesia (Soplata et al., 2017), brain
area (Ninomiya et al., 2015), coupling frequencies, and
task performance (Jones et al., 2020; Lega et al., 2016).
This suggests that PAC phase preference (as measured
on the scalp) could reflect an underlying area’s dynamic
functional configuration during the recording period.
Although many measures of PAC are agnostic to phase,
these findings suggest that not just if, but how g interacts
with lower frequency waveforms may reflect a region’s
role in either the intake or modulation of information for
neural processing.

Numerous developmental changes in electroencepha-
lography (EEG) power have been documented (Saby and
Marshall, 2012). However, no studies have examined the
development of PAC phase preference, and few have ex-
amined the development of PAC strength over early child-
hood. Of note, coupling between high d (2–4Hz) and a
40-Hz frequency following response during a 40-Hz audi-
tory click train has been found to increase from 8 to
16 years in the first principal component of the EEG data
back-projected onto FCz, and begins to decrease from 16
to 22 years (Cho et al., 2015). Still, few studies have fo-
cused on infancy and early childhood, a period when the
brain is highly plastic and shows significant structural and
functional developmental changes. Although PAC has
been documented in infancy (Vanhatalo et al., 2005), only
one study examined PAC development during infancy:
PAC between slow wave (0.7–2Hz) and b (11.3–32Hz)
oscillations across the scalp during sleep was found to
decrease over the first two weeks after birth (Tokariev et
al., 2016). These studies suggest that PAC can vary
based on the age, frequency range, topography, state,
and task being studied.
Thus, although the brain continues to demonstrate high

plasticity and significant developmental changes from
birth to early childhood (Gao et al., 2017), no studies have
examined how PAC strength or phase preference devel-
ops in this age range. This is of particular importance be-
cause many neurodevelopmental disorders first manifest
behaviorally during these early years. Development of
predictive or risk-associated biomarkers that may allow
for earlier treatment is a high priority in the field of neuro-
developmental disorders (Sahin et al., 2019; Wolff and
Piven, 2020). While EEG power has been extensively
studied for this purpose (Brito et al., 2019; Gabard-
Durnam et al., 2019), PAC may offer particular promise
given its potential mechanistic underpinnings (Canolty
and Knight, 2010; Jensen et al., 2014; Hyafil et al., 2015;
Helfrich et al., 2016). However, use of PAC for studying
neurodevelopmental disorders first requires an under-
standing of how PAC changes across typical develop-
ment. Here, we sought to address these gaps by
characterizing, through both PAC strength and phase
preference, how PAC develops between three months
and three years of age.

Materials and Methods
Participants
The data for this study were drawn from a larger longitu-

dinal study of neurocognitive development across the first
three postnatal years of life. This study included later born
infants (n=98; 53 males and 45 females; Table 1) who
had at least one typically developing older sibling. The
study was conducted at Boston Children’s Hospital/
Harvard Medical School and Boston University. All infants
had a minimum gestational age of 36weeks, no history of
prenatal or postnatal medical or neurologic problems, no
known genetic disorders (e.g., fragile X, tuberous sclero-
sis) and no family history of autism spectrum disorder or
other neuropsychiatric conditions (based on parent
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report). Institutional review board approval was obtained
from both institutions (#X06-08-0374).

EEG acquisition/processing
Among infants enrolled in the study, EEG data were col-

lected sequentially at 3, 6, 9, 12, 18, 24, and 36months of
age, as previously described (Gabard-Durnam et al.,
2019). However, not all participants completed an EEG re-
cording at every time point; 17 participants had an EEG
completed at only one time point, 10 participants had an
EEG completed at two time points, 21 participants had
three time points, 22 participants had four, 19 participants
had five, eight participants had six, and only one partici-
pant had an EEG completed at all seven timepoints.
Infants were seated on their caregiver’s lap while a re-
search assistant blew bubbles and/or presented toys to
ensure the infant remained calm, without any time-locked
stimulus or task. Continuous EEG was recorded for up to
5min using either a 64-channel Geodesic Sensor Net
System or 128-channel Hydrocel Geodesic Sensor Nets
(Electrical Geodesics). Data were sampled at either 250 or
500Hz, and referenced at collection to a single vertex
electrode (Cz). Impedances were kept below 100 kV
(within recommended guidelines for young children, given
the high-input impedance capabilities of this system’s
amplifier).
Raw EEG files were exported from NetStation to

MATLAB (versionR2017b, MathWorks) for preprocessing.
Files were processed using the batch EEG automated
processing platform (BEAPP; Levin et al., 2018; Fig. 1).
Data were first filtered using a 1–100Hz bandpass filter,
which had a combined transition band width of 1Hz. Data
sampled at 500Hz were then downsampled to 250Hz for
consistency, and to constrain the signal decomposed by
later independent components analysis (ICA)-based

steps (Gabard-Durnam et al., 2018). Subsequently, within
BEAPP, the Harvard Automated Preprocessing Pipeline
for EEG (HAPPE), which was developed specifically to op-
timize preprocessing of developmental EEG data with po-
tentially high levels of artifact and short recordings, was
used to automate preprocessing and artifact minimization
(Gabard-Durnam et al., 2018). Because ICA cannot reli-
ably decompose data with a large number of channels
given a short recording (Onton and Makeig, 2006;
Gabard-Durnam et al., 2018), and because many other
electrodes differed in their placements between the 64-

Table 1: Participant demographics

Participants (n=98)
Sex 53 (M) 45 (F)
Maternal education

,4-year degree 13 (13%)
4-year degree 26 (27%)
Graduate degree 49 (50%)
Did not answer 10 (10%)

Paternal education
,4-year degree 19 (19%)
4-year degree 34 (35%)
Graduate degree 34 (35%)
Did not answer 11 (11%)

Race
White or White 82 (84%)
Black or African American 3 (3%)
Asian 2 (2%)
American Indian or Alaskan Native 0 (0%)
Native Hawaiian or Pacific Islander 0 (0%)
More than one reported 10 (10%)
Not reported 1 (1%)

Ethnicity
Not Hispanic or Latino 93 (94%)
Hispanic or Latino 4 (4%)
Not reported 1 (1%)

Figure 1. Processing pipeline: steps in EEG processing and
PAC analysis. EEG data processing in BEAPP consists of sev-
eral major steps: preprocessing (formatting, filtering, downsam-
pling, HAPPE artifact rejection and re-referencing to average,
segmentation) and PAC analysis; each step is represented by a
cell, with additional details inside each cell. Cell body color re-
flects module input format, and cell outline color reflects mod-
ule output format. Green = native file format. Blue = EEG in
continuous array. Purple = EEG in segmented 3D array. Red =
PAC measures.
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channel and 128-channel nets, only electrodes in the in-
ternational 10–20 system were included in this pipeline; all
other electrodes were removed before further analysis. In
brief, within HAPPE, data underwent the following steps:
electrical line noise removal at 60Hz via Cleanline (Mullen,
2012), bad channel rejection (using channel power
spectrum outlier thresholds), wavelet-thresholding of in-
dependent components, and secondary independent
component analysis with component rejection via the au-
tomated multiple artifact rejection algorithm (MARA;
Winkler et al., 2011, 2014). Data were then re-referenced
to average, and segmented into 2-s windows for PAC
analysis. This length was set to contain a sufficient sam-
ple of cycles for analysis of slower oscillations, while also
retaining a sufficient amount of data (a longer segment
length, in the presence of artifact, would lead to the rejec-
tion of more data). For each segment, to further remove
artifact, the probability of an electrode’s activity given the
electrode’s activity in all other segments, as well as the
probability of an electrode’s activity given the activity of
all other electrodes in the same segment, was assessed
using EEGLAB’s pop_jointprob function (Delorme and
Makeig, 2004). Segments where either probability was
outside 3 SDs from the mean were rejected (Gabard-
Durnam et al., 2018). Because 60 s of data has been
shown to be needed to obtain stable PAC estimates
(Berman et al., 2015), for each participant, 30 segments
(60 s of data) were then randomly selected for further
analysis; files with fewer than 30 segments of data at this
stage were not analyzed (Table 2). Primary PAC metrics
were then obtained as described below using code added
to the BEAPP software, publicly available at https://
github.com/lcnbeapp/beapp.
Five EEG recordings were .3 SDs from the mean on

one of the following HAPPE data quality output parame-
ters: percent good channels, mean retained artifact prob-
ability, median retained artifact probability, percent of
independent components rejected, and percent variance
retained after artifact removal. These EEGs were eval-
uated for differences in overall PAC (averaged across fre-
quencies and channels), all files were found to be within 2
SDs of the mean at the time point of collection, so these
files were included in later analyses.

Simulated signals
Our EEG processing pipeline included multiple filtering

steps. Given that filtering of EEG data has been shown to
result in frequency dependent phase shifts (Yael et al.,

2018), we ran simulated signals through our pipeline to
examine whether these filtering steps could alter ob-
served PAC phase preference. To do so, a high-frequency
oscillation was added on top of a low-frequency oscilla-
tion such that the high-frequency oscillation demon-
strated increased amplitude during �90°, 0°, 90°, and
180° phases in four separate simulated signals. Simulated
pink noise was then added to this signal to prevent artifact
rejection from rejecting this unrealistic data. Because
these phase shifts are frequency dependent, we gener-
ated these simulated phase-preferences in a variety of
low-frequency and high-frequency combinations: specifi-
cally, between all combinations of the low-frequency os-
cillations of 2, 4, 8, and 16Hz, and the high-frequency
oscillation 64Hz. All simulated signals were run through
all processing steps used in the present study with the ex-
ception of re-referencing, which removes the phase pref-
erence of this simulated data. After running PAC, the
phase preference of each low-frequency phase and high-
frequency amplitude combination was compared with its
original phase preference.

Computation of PACmetrics
Modulation index
PAC was first quantified using the Pactools toolbox

(Dupré la Tour et al., 2017) in Python as integrated within
BEAPP. In detail, the signal in each segment was first ex-
ported from MATLAB into Python and filtered into a range
of frequency pairs, with center frequencies for the low fre-
quencies ranging from 2 to 20Hz in 2-Hz steps, and for
the high frequencies ranging from 40–100Hz in 4-Hz
steps. The low-frequency signal was filtered with a 2-Hz
bandwidth, and the high-frequency signal was filtered
with a 20-Hz bandwidth. Filtering at this step consisted of
a zero-phase cosine-based filter to extract the real com-
ponent, and then a sine-based filter to extract the imagi-
nary component, resulting in a complex-valued output
signal. Subsequently, PAC was assessed between each
low-frequency and high-frequency filtered signal. Given
the relatively wide bandwidth used when filtering the high
frequencies, and to account for the transition bands of the
filters, we did not analyze PAC frequency pairs in which
there was overlap between the frequency response of the
low-frequency filter and that of the high-frequency filter.
For all other remaining low-frequency and high-frequency
combinations, the time series of phases of the low-fre-
quency signal and the amplitude of the high-frequency

Table 2: Number of EEG files (for each net type and in total) collected and analyzed per age group studied

Age
(months)

64-channel
geodesic
collected

64-channel
geodesic
analyzed

128-channel
HydroCel
collected

128-channel
HydroCel
analyzed

Total
EEGs
collected

Total
EEGs
analyzed

3 5 2 13 12 18 14
6 19 14 56 48 75 62
9 21 14 65 54 86 68
12 18 16 67 53 85 69
18 9 6 56 46 65 52
24 10 6 58 53 68 59
36 0 0 76 62 76 62
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signal were obtained. The phases of the low-frequency
signal were then binned into 18 20° intervals (�180° to
180°), and the mean of the amplitude of the high-fre-
quency signal (HFamp) occurring within each phase bin
was calculated. After applying this procedure on each of
the 30 segments, data were then imported back into
MATLAB. There, HFamp at each phase bin of the low-fre-
quency signal (LFf ) was then averaged together across
the participant’s 30 segments before computing the raw
modulation index (MIraw) as the Kullback–Leibler diver-
gence from a uniform amplitude distribution (see Tort et
al., 2010 for more details and illustration). To control for
factors not of interest that have been shown to affect PAC
(such as spectral power), for each participant, 200 surro-
gate MI values (MIsurr) were generated by repeating the
procedure after offsetting HFamp from LFf by a random-
ized time shift between 0.1 and 1.9 s. From this distribu-
tion, the mean [m(MIsurr)] and SD were then calculated. A
normalized MI (MInorm) was then computed as the z score
of the MIraw compared with the distribution of MIsurr values
(Canolty et al., 2006). Consequently, for each EEG, a sin-
gle MIraw, m(MIsurr), and MInorm were obtained. For subse-
quent clustering analysis, MIraw values were statistically
compared with m(MIsurr) values, while MInorm values were
used to assess a correlation with age.

Phase max
The Tort method used here to quantify PAC captures

the presence of coupling, regardless of where in the LFf
the high-frequency signal demonstrates increased ampli-
tude. However, PAC can result from an increase high-fre-
quency amplitude anywhere in the low-frequency
waveform. To capture this, for each frequency pair at
each electrode, we determined phase preference by cal-
culating the LFf bin where HFamp was maximal (termed
phase max; Port et al., 2019). Phase max values were
averaged across EEG recordings (in each age group, or
across all age groups) using the circ_mean function in the
circular statistics toolbox (Berens, 2009).

Statistical analysis
Identification of PAC1 clusters across all ages
For every electrode, we now had obtained a modulation

index for each frequency pair. To identify statistically sig-
nificant areas both across frequency pairs and across
channels, we employed a cluster-based permutation
method described below to identify clusters exhibiting
significant PAC (PAC1). We clustered on MI using data
from all useable EEGs, at every age (three months to
three years) at which they were collected.
Whereas most clustering procedures involve comparing

one condition to another (i.e., task vs baseline stimuli), our
task analyzed resting EEG data and therefore had no anal-
ogous comparison condition (or baseline) against which
to test. In its place, we used the mean modulation index
across the surrogate values m(MIsurr). These data serve as
an effective “control” set as it retains the characteristics
of the signal (power, noise), while any coupling present in
the actual signal should not be retained. Thus, we used

clustering against m(MIsurr) to reveal clusters where the
PACmetric of interest is present to a significant degree.
For our clustering procedure, we implemented a non-

parametric method that closely followed that by (Maris
and Oostenveld, 2007):

1. For every channel, between every filtered low-fre-
quency signal and high-frequency signal, a t test was
used to compare the MIraw values across all files and
them(MIsurr) values across all files.

2. Data points where the null hypothesis was rejected (p
, 0.05, two-sided t test) were selected.

3. Selected data points on the same channel adjacent to
one another in terms of low frequency or high frequency
were grouped together into clusters (MATLAB function
bwlabel, connectivity = 4).

4. After subtracting the minimum t value needed to
achieve p , 0.05 from all data points, cluster level sta-
tistics were computed by taking the sum of t values
within each cluster.

Then, to compute which clusters were significant (i.e.,
unlikely to occur with that strength or size by chance, or
to remove clusters that may be spurious), we imple-
mented the following:

1. For half of the participants, selected randomly, the
MIraw and m(MIsurr) data were “flipped,” such that their
m(MIsurr) data were treated as MIraw, and their MIraw
were treated asm(MIsurr).

2. Test statistics and cluster sizes were calculated in the
samemanner as used previously.

3. The previous steps were repeated 200 times, creating a
distribution of cluster sizes.

4. Clusters ,95th percentile of this distribution were re-
moved from further analysis.

For the remaining analysis, only low-frequency, high-
frequency, and channel combinations belonging to a clus-
ter found to demonstrate significant PAC (PAC1) were
included.

Development of PACmetrics with age
To investigate how our PAC metrics in these clusters

were associated with age, a Pearson correlation was
computed between age and MInorm averaged in all ana-
lyzed low-frequency, high-frequency, and channel
combinations.
To analyze how PAC phase was associated with age,

for each EEG recording, the number of low-frequency,
high-frequency, and channel combinations analyzed
where phase max was found in each LFf bin was taken.
These values were then divided by the total number of
low-frequency, high-frequency, and channel combina-
tions analyzed to obtain the proportion of phase max val-
ues found in each phase bin. Age was then correlated
with these values in all 18 LFf bins, indicating which LFf
ranges demonstrated increases or decreases in propor-
tion of phase max values with age. Significant correlations
(p, 0.05) were determined after Bonferroni correction for
18 tests. Because a study being analyzed in parallel ob-
served frontal and posterior channels differed in phase
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preference (Mariscal et al., 2021), we additionally per-
formed these correlations in frontal and posterior chan-
nels separately.

Code accessibility
The code to process EEG data are publicly available

under the BEAPP and HAPPE software licenses (BEAPP:
https://github.com/lcnbeapp/beapp; HAPPE: https://github.
com/lcnhappe/happe). Additional code used for calcula-
tion of metrics and statistical analysis is available upon
reasonable request.

Results
Simulated signals
All simulated signals were run through all preprocessing

steps (with the exception of re-referencing) and their PAC
was subsequently analyzed. All simulated phase max val-
ues in each low-frequency phase and high-frequency am-
plitude combination tested demonstrated its maximum
high-frequency amplitude at its approximate simulated
phase preference, indicating phase preference was not

altered by the filtering steps used during EEG processing
or PAC analysis.

Identification of significant MI clusters across all ages
Clustering on MI of all participants regardless of age se-

lected 68.2% of low-frequency, high-frequency, and
channel combinations (Fig. 2). All channels analyzed con-
tained at least one significant cluster.

Phase preference
There is a spatial distribution of phase max, where more

anterior electrodes largely exhibited a phase max on or
around �110°, while more posterior electrodes largely ex-
hibited a phase max on or around 70° (Figs. 3, 4A).

Development of PACmetrics with age
MInorm in PAC1 clusters increases with age (r=0.2550,

p=2.035� 10�6), this increase appears most prominently
from one to three years of age (Fig. 5). MInorm in PAC1
clusters does not differ as a function of net type (p. 0.1).

Figure 2. PAC1 clusters across all ages. Comodulograms of t scores, for each electrode, showing MI of each area. White lines out-
line clusters with significant MI (PAC1 clusters, p, 0.05, corrected for multiple comparisons). In some cases (e.g., Fp1, Fp2, O1,
and O2), PAC1 clusters cover most of the comodulogram; therefore, in these cases, white lines outlining blue clusters mark the bor-
der of a small area that is not PAC1. Comodulograms indicate the level of coupling between phase frequencies (x-axis, 0–20 Hz),
and amplitude frequencies (y-axis, 40–100 Hz). Each electrode is plotted at approximate electrode location on scalp. All analyzed
EEGs were included (regardless of age at collection).
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We additionally examined whether the proportion of
low-frequency, high-frequency, and channel combina-
tions demonstrating phase max at each phase bin is asso-
ciated with age (Fig. 4). Over all channels analyzed, the
proportion of data points demonstrating phase max in
the 90° phase bin significantly increased with age, while
the proportion of data points decreased in the �30°
phase bin. This change was driven by the posterior chan-
nels, where the proportion of data points in the 30°–90°
range increased with age, while the proportion of data
points in the �170°–(�70°) range decreased. Anterior
channels, on the other hand, demonstrated a nearly op-
posite trend, where the proportion of data points in the
�150°–(�110°) range increased with age, while the pro-
portion of data points in the �30°–70° phase range, with
the exception of the 50° phase bin, decreased.

Discussion
The primary goals in this study were to capture the dy-

namics of early brain development using PAC and to ex-
amine how PAC changes over the first three years of life.
Here, we explore PAC from three months through
three years of age. This PAC occurs most prominently be-
tween a-b and g , largely consistent with several reports

of a-g PAC in resting state recordings (Roux et al., 2013;
Berman et al., 2015; Gohel et al., 2016) but is also present
between theta and g . We observe PAC broadly across
the scalp, suggesting a relatively ubiquitous presence of
cross-frequency coupling. Our data suggest PAC in-
creases in strength with age from three months to three
years of age. The phase preference of this PAC shows op-
posing trends, separated by scalp region: PAC in poste-
rior electrodes (particularly over occipital lobes) is driven
by a peak in g amplitude largely during the positive
phases of LFf (centered around 170°), while PAC in an-
terior electrodes (particularly over frontal lobes) is driven
by a peak in g amplitude largely during the negative
phases of the LFf [centered around�130°–(�110°)].
To our knowledge, this study is the first to demonstrate

this regional separation in phase preference. As a result,
the mechanisms underlying this difference, and its rela-
tionship to circuit function, is presently unclear. However,
the strong difference of phase preference between brain
areas, as well as the development of this difference with
age, suggests phase preference may capture meaningful
network characteristics. For example, laminar recordings
have found phase preference to vary by cortical layers
(Sotero et al., 2015). Because scalp-level EEG reflects the
grand average of underlying activity, one possibility is that

Figure 3. Phase preference across all ages. Comodulograms of phase max, for each electrode. Comodulograms indicate the aver-
age phase max value across all EEGs (regardless of age at collection). Here, only low-frequency, high-frequency, and channel com-
binations in PAC1 clusters are displayed. Each electrode is plotted at approximate electrode location on scalp.
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phase preference reflects the relative activity of underly-
ing cortical layers; this would be of particular mechanistic
interest because cortical layers with opposing phase pref-
erences also have opposing predominant directionality of
information flow [i.e., feedforward (bottom-up, thalamo-
cortical) vs feedback (top-down, corticothalamic) activity].
Supporting this hypothesis, the relative thickness of each
cortical layer differs along the anterior–posterior axis
(Wagstyl et al., 2020). Back translation of phase prefer-
ence findings, perhaps using laminar recordings, may
provide further insights into neural network activity across
development.
This study is not without limitations. Regarding the da-

taset analyzed, our sample size at the three-month time
point was relatively small (n=14), more participants
would allow for a more exact description of PAC at this
age. Likewise, most participants did not contribute quality
data at every time point, meaning the sample composition
at each age differs slightly from other ages. Because of
this, our study demonstrates association between age
and PAC at a group level, but does not directly demon-
strate age-related changes on an individual level. In addi-
tion, although PAC has been shown to differ with
vigilance state (He et al., 2010; Tokariev et al., 2016), this
study only recorded from brief epochs of awake resting
data, and consequently these effects were not analyzed.
Likewise, our analysis was conducted on only 1 min of

artifact-free data; although analytically, this recording
length has been shown to be sufficient for PAC analyses
(Berman et al., 2015), a longer recording would provide a
more thorough description of PAC for each individual.
Finally, the EEG analysis presented here was conducted

Figure 4. Distribution of phase max across all ages and correlations with age. A, Circular plots display the mean proportion of low-
frequency, high-frequency, and electrode combinations demonstrating phase max (radius of figure) at each phase bin (angles of fig-
ure) for each age (in months). Data are analyzed and plotted over all channels analyzed (left), anterior channels Fp1, Fp2, F3, F4, F7,
F8, Fz (middle), and posterior channels P3, P4, P7, P8, Pz, O1, O2 (right). B, Correlation coefficients (r , radius of figure) of the
Pearson correlation between the proportion of low-frequency, high-frequency, and electrode combinations demonstrating phase
max at each phase bin (angles of figure), and age. *Indicates phase bins where the correlation is significant (p, 0.05, Bonferroni
corrected for 18 tests).

Figure 5. Association between MInorm and age. Median MInorm
in PAC1 clusters plotted as a function of age. Clusters between
the 25th and 75th percentiles are shaded.
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on sensor (not source) level EEG data. This data could
therefore be affected by changes in volume conduction
because of the structural development of the brain during
infancy (Grieve et al., 2003; Odabaee et al., 2014). Future
studies are needed to assess how the structural changes
in the brain during infancy could affect the results pre-
sented here.
In summary, this study documents the emergence of

PAC in early childhood. We find HFamp is increased at op-
posing phases of LFf in anterior areas as compared with
posterior areas. Future studies would be beneficial in fur-
ther assessing the potential functional relevance of the
spatial distribution of phase preference; we suggest lami-
nar differences in the direction of information flow (feed-
forward vs feedback) as one potential avenue for further
exploration.
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