3 research outputs found

    Impacts of coral bleaching on reef fish abundance, biomass and assemblage structure at remote Aldabra Atoll, Seychelles: insights from two survey methods

    Get PDF
    IntroductionCoral bleaching immediately impacts the reef benthos, but effects on fish communities are less well understood because they are often delayed and confounded by anthropogenic interactions.MethodsWe assessed changes in fish abundance, biomass and community composition before and after the 2015/16 coral bleaching event at Aldabra Atoll, Seychelles, where local human impacts are minimal, but reefs suffered 50% bleaching-induced coral mortality. We monitored 12 shallow (2–5 m water depth) and nine deep (15 m water depth) permanent survey sites using two survey methods: indicator surveys recording 84 taxa over six years (pre-: 2014; post-bleaching: 2016–2019, 2021), sizing fish based on six size-class categories, and extended fish surveys recording 198 taxa over two years (pre-: 2015; post-bleaching: 2020) with size estimates to the nearest cm (excluding fish < 8 cm).ResultsDuring indicator surveys, mean fish abundance did not change on deep reefs. However, abundance increased by 77% on shallow reefs between 2014 and 2016, which was mainly driven by increases in herbivores and omnivores, likely as a response to elevated turf algae cover following coral mortality. Overall (and functional group-specific) indicator fish biomass did not differ between 2014 and 2016 and remained at or above pre-bleaching levels throughout 2016–2021. In contrast, extended fish surveys in 2015 and 2020 showed a 55–60% reduction in overall abundance on shallow and deep reefs, and a 69% reduction in biomass on shallow reefs, with decreases in biomass occurring in all functional groups. Biomass on deep reefs did not differ between 2015 and 2020. Multivariate analysis of both data sets revealed immediate and long-lasting differences between pre- and post-bleaching fish community compositions, driven largely by herbivorous, omnivorous and piscivorous taxa.DiscussionResults from the indicator surveys suggest that the bleaching event had limited impact on fish abundance and biomass, while the extended surveys recorded changes in abundance and biomass which would otherwise have gone undetected. Our findings improve understanding of the shift a broad community of fish undergoes following a mass coral bleaching event and highlights the value of survey methods that include the full suite of species to detect ecological responses to environmental drivers

    Large-scale coral reef restoration could assist natural recovery in Seychelles, Indian Ocean

    Get PDF
    The aim of ecological restoration is to establish self-sustaining and resilient systems. In coral reef restoration, transplantation of nursery-grown corals is seen as a potential method to mitigate reef degradation and enhance recovery. The transplanted reef should be capable of recruiting new juvenile corals to ensure long-term resilience. Here, we quantified how coral transplantation influenced natural coral recruitment at a large-scale coral reef restoration site in Seychelles, Indian Ocean. Between November 2011 and June 2014 a total of 24,431 nursery-grown coral colonies from 10 different coral species were transplanted in 5,225 m2 (0.52 ha) of degraded reef at the no-take marine reserve of Cousin Island Special Reserve in an attempt to assist in natural reef recovery. We present the results of research and monitoring conducted before and after coral transplantation to evaluate the positive effect that the project had on coral recruitment and reef recovery at the restored site. We quantified the density of coral recruits (spat <1 cm) and juveniles (colonies 1-5 cm) at the transplanted site, a degraded control site and a healthy control site at the marine reserve. We used ceramic tiles to estimate coral settlement and visual surveys with 1 m2 quadrats to estimate coral recruitment. Six months after tile deployment, total spat density at the transplanted site (123.4 ± 13.3 spat m-2) was 1.8 times higher than at healthy site (68.4 ± 7.8 spat m-2) and 1.6 times higher than at degraded site (78.2 ± 7.17 spat m-2). Two years after first transplantation, the total recruit density was highest at healthy site (4.8 ± 0.4 recruits m-2), intermediate at transplanted site (2.7 ± 0.4 recruits m-2), and lowest at degraded site (1.7 ± 0.3 recruits m-2). The results suggest that large-scale coral restoration may have a positive influence on coral recruitment and juveniles. The effect of key project techniques on the results are discussed. This study supports the application of large-scale, science-based coral reef restoration projects with at least a 3-year time scale to assist the recovery of damaged reefs

    DataSheet_1_Impacts of coral bleaching on reef fish abundance, biomass and assemblage structure at remote Aldabra Atoll, Seychelles: insights from two survey methods.zip

    No full text
    IntroductionCoral bleaching immediately impacts the reef benthos, but effects on fish communities are less well understood because they are often delayed and confounded by anthropogenic interactions.MethodsWe assessed changes in fish abundance, biomass and community composition before and after the 2015/16 coral bleaching event at Aldabra Atoll, Seychelles, where local human impacts are minimal, but reefs suffered 50% bleaching-induced coral mortality. We monitored 12 shallow (2–5 m water depth) and nine deep (15 m water depth) permanent survey sites using two survey methods: indicator surveys recording 84 taxa over six years (pre-: 2014; post-bleaching: 2016–2019, 2021), sizing fish based on six size-class categories, and extended fish surveys recording 198 taxa over two years (pre-: 2015; post-bleaching: 2020) with size estimates to the nearest cm (excluding fish ResultsDuring indicator surveys, mean fish abundance did not change on deep reefs. However, abundance increased by 77% on shallow reefs between 2014 and 2016, which was mainly driven by increases in herbivores and omnivores, likely as a response to elevated turf algae cover following coral mortality. Overall (and functional group-specific) indicator fish biomass did not differ between 2014 and 2016 and remained at or above pre-bleaching levels throughout 2016–2021. In contrast, extended fish surveys in 2015 and 2020 showed a 55–60% reduction in overall abundance on shallow and deep reefs, and a 69% reduction in biomass on shallow reefs, with decreases in biomass occurring in all functional groups. Biomass on deep reefs did not differ between 2015 and 2020. Multivariate analysis of both data sets revealed immediate and long-lasting differences between pre- and post-bleaching fish community compositions, driven largely by herbivorous, omnivorous and piscivorous taxa.DiscussionResults from the indicator surveys suggest that the bleaching event had limited impact on fish abundance and biomass, while the extended surveys recorded changes in abundance and biomass which would otherwise have gone undetected. Our findings improve understanding of the shift a broad community of fish undergoes following a mass coral bleaching event and highlights the value of survey methods that include the full suite of species to detect ecological responses to environmental drivers.</p
    corecore